All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 200894 by sonukgindia last updated on 26/Nov/23
Answered by Frix last updated on 26/Nov/23
=4∫π20dx1+4sin2x=t=tanx=4∫∞0dt5t2+1=45[tan−15t]0∞=2π5
Answered by Calculusboy last updated on 28/Nov/23
Solution:multiplynumeratoranddenominatorby(1cos2x)I=∫0π21cos2x1cos2x+4sin2xcos2xdxNb:tanx=sinxcosxandsecx=1cosxI=∫0π2sec2xsec2x+4tan2xdxrecallthatsec2x=1+tan2xI=∫0π2sec2x1+tan2x+4tan2xdxletu=tanxdx=dusec2xwhenx=π2u=∞andwhenx=0u=0I=∫0∞sec2x1+5u2⋅dusec2x⇔I=15∫0∞du15+u2I=15∫0∞duu2+(15)2⇔I=15×1(15)[tan−1(x(15))]0∞+CI=55[tan−1(∞)−tan−1(0)]I=55[π2−0]I=π510
Terms of Service
Privacy Policy
Contact: info@tinkutara.com