Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 200894 by sonukgindia last updated on 26/Nov/23

Answered by Frix last updated on 26/Nov/23

=4∫_0 ^(π/2) (dx/(1+4sin^2  x)) =^(t=tan x)   =4∫_0 ^∞ (dt/(5t^2 +1))=(4/( (√5)))[tan^(−1)  (√5)t]_0 ^∞ =((2π)/( (√5)))

=4π20dx1+4sin2x=t=tanx=40dt5t2+1=45[tan15t]0=2π5

Answered by Calculusboy last updated on 28/Nov/23

Solution: multiply numerator and denominator  by ((1/(cos^2 x)))  I=∫_0 ^(𝛑/2)  ((1/(cos^2 x))/(1/(cos^2 x+((4sin^2 x)/(cos^2 x)))))dx Nb: tanx=((sinx)/(cosx)) and secx=(1/(cosx))  I=∫_0 ^(π/2) ((sec^2 x)/(sec^2 x+4tan^2 x))dx   recall that sec^2 x=1+tan^2 x  I=∫_0 ^(𝛑/2)  ((sec^2 x)/(1+tan^2 x+4tan^2 x))dx   let u=tanx   dx=(du/(sec^2 x))  when x=(𝛑/2)   u=∞  and when x=0  u=0  I=∫_0 ^∞ ((sec^2 x)/(1+5u^2 ))∙(du/(sec^2 x))   ⇔  I=(1/5)∫_0 ^∞  (du/((1/5)+u^2 ))  I=(1/5)∫_0 ^∞  (du/(u^2 +((1/( (√5))))^2 ))    ⇔  I=(1/5)×(1/(((1/( (√5))))))[tan^(−1) ((x/(((1/( (√5)))))))]_0 ^∞ +C  I=((√5)/5)[tan^(−1) (∞)−tan^(−1) (0)]  I=((√5)/5)[(𝛑/2)−0]  I=((𝛑(√5))/(10))

Solution:multiplynumeratoranddenominatorby(1cos2x)I=0π21cos2x1cos2x+4sin2xcos2xdxNb:tanx=sinxcosxandsecx=1cosxI=0π2sec2xsec2x+4tan2xdxrecallthatsec2x=1+tan2xI=0π2sec2x1+tan2x+4tan2xdxletu=tanxdx=dusec2xwhenx=π2u=andwhenx=0u=0I=0sec2x1+5u2dusec2xI=150du15+u2I=150duu2+(15)2I=15×1(15)[tan1(x(15))]0+CI=55[tan1()tan1(0)]I=55[π20]I=π510

Terms of Service

Privacy Policy

Contact: info@tinkutara.com