All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 192275 by York12 last updated on 13/May/23
200932016n+2013+201022016n+2013≡xmod(11)wherenisanyinteger≥0
Answered by BaliramKumar last updated on 14/May/23
0
ϕ(11)=10⇒ϕ(10)=4200911=7rem.⇒310=3rem.⇒2016n+20134=1rem.201011=8rem.⇒210=2rem.⇒2016n+20134=1rem.73111+82111=34311+6411=211+−211=011=0Remainder
Commented by York12 last updated on 14/May/23
2009≡7mod(11)→200910≡710mod(11)∵11isaprimenumber→wecanapplyfermat′slittletheorm∴710≡1mod(11)→710k≡1mod(11)wherekisaaninteger≥0200932016n+2013≡732016n+2013mod(11)32016n+2013canbewrittenas34(504n+503)+1→TheUnitdigitwouldbe3∴32016n+2013≡3mod(10)→32016n+2013canbewrittenas10k+3710k≡1mod(11),73≡2mod(11)∴710k+3≡2mod(11)∴200932016n+2013≡2mod(11)→{I}2010≡8mod(11)→201010≡810mod(11)Byusingfermat′slittletheorm:wecanstatethefollowing810≡1mod(11)→810m≡1mod(11)201022016n+2013≡822016n+2013mod(11)22016n+2013canbewrittenas24(504n+503)+1∴TheUnitdigitof22016n+2013is2∴22016n+2013≡2mod(10)→canbdwrittenas10m+2810m≡1mod(11),82≡9mod(11)∴810m+2≡9mod(11)∴201022016n+2013≡9mod(11)→{II}fromIandIIweconcludethat:200932016n+2013+201022016n+2013≡0mod(11)∴x=0(That′sit)[BYYORK]
Terms of Service
Privacy Policy
Contact: info@tinkutara.com