Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 192275 by York12 last updated on 13/May/23

2009^3^(2016n+2013)  +2010^2^(2016n+2013)  ≡x mod(11) where n is any integer ≥0

200932016n+2013+201022016n+2013xmod(11)wherenisanyinteger0

Answered by BaliramKumar last updated on 14/May/23

0

0

Answered by BaliramKumar last updated on 14/May/23

φ(11) = 10 ⇒ φ(10) = 4  ((2009)/(11))=7 rem.⇒(3/(10))= 3 rem. ⇒((2016n+2013)/4) = 1 rem.         ((2010)/(11))=8 rem.⇒(2/(10))= 2 rem. ⇒((2016n+2013)/4) = 1 rem.                (7^3^1  /(11))  + (8^2^1  /(11)) = ((343)/(11)) + ((64)/(11)) = (2/(11)) + ((−2)/(11)) = (0/(11)) = 0 Remainder

ϕ(11)=10ϕ(10)=4200911=7rem.310=3rem.2016n+20134=1rem.201011=8rem.210=2rem.2016n+20134=1rem.73111+82111=34311+6411=211+211=011=0Remainder

Commented by York12 last updated on 14/May/23

  2009 ≡ 7 mod  (11)   →  2009^(10)  ≡ 7^(10)  mod (11)   ∵ 11 is a prime number → we can apply fermat′s little  theorm  ∴ 7^(10)  ≡ 1 mod (11)   → 7^(10k)  ≡  1 mod (11)   where k is a  an  integer ≥ 0  2009^3^(2016n+2013)   ≡ 7^3^(2016n+2013)   mod (11)  3^(2016n+2013)   can be written as 3^(4(504n+503)+1)  → The Unit digit would be 3  ∴ 3^(2016n+2013)  ≡ 3 mod (10) → 3^(2016n+2013)   can be written as 10k  +3    7^(10k)  ≡ 1 mod (11) ,  7^3  ≡ 2 mod (11)  ∴  7^(10k+3)  ≡ 2 mod (11)  ∴ 2009^3^(2016n+2013)   ≡ 2 mod (11) →  {I}  2010 ≡ 8 mod (11) → 2010^(10)  ≡ 8^(10)  mod (11)  By using fermat′s little theorm: we can state the following   8^(10 )  ≡ 1 mod (11) → 8^(10m)  ≡ 1 mod (11)  2010^2^(2016n+2013)   ≡  8^2^(2016n+2013)   mod(11)  2^(2016n+2013)  can be written as 2^(4(504n+503)+1)   ∴The Unit digit of 2^(2016n+2013)  is 2  ∴2^(2016n+2013)  ≡ 2 mod (10) → can bd written as 10m+2   8^(10m)  ≡ 1 mod (11) , 8^2  ≡ 9 mod (11)  ∴ 8^(10m+2)  ≡  9 mod (11)  ∴ 2010^2^(2016n+2013)   ≡ 9 mod (11) → {II}  from I and II we conclude that:    2009^3^(2016n+2013)   + 2010^2^(2016n+2013)   ≡ 0 mod (11)  ∴ x = 0          (That′s it)                                                  [BY  YORK]

20097mod(11)200910710mod(11)11isaprimenumberwecanapplyfermatslittletheorm7101mod(11)710k1mod(11)wherekisaaninteger0200932016n+2013732016n+2013mod(11)32016n+2013canbewrittenas34(504n+503)+1TheUnitdigitwouldbe332016n+20133mod(10)32016n+2013canbewrittenas10k+3710k1mod(11),732mod(11)710k+32mod(11)200932016n+20132mod(11){I}20108mod(11)201010810mod(11)Byusingfermatslittletheorm:wecanstatethefollowing8101mod(11)810m1mod(11)201022016n+2013822016n+2013mod(11)22016n+2013canbewrittenas24(504n+503)+1TheUnitdigitof22016n+2013is222016n+20132mod(10)canbdwrittenas10m+2810m1mod(11),829mod(11)810m+29mod(11)201022016n+20139mod(11){II}fromIandIIweconcludethat:200932016n+2013+201022016n+20130mod(11)x=0(Thatsit)[BYYORK]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com