All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 20091 by Tinkutara last updated on 21/Aug/17
Provethat∑3n=0tan2(2n+1)π16=28.
Answered by ajfour last updated on 21/Aug/17
sin2Acos2A+sin2Bcos2B=sin2Acos2B+cos2Asin2Bcos2Acos2B=[sin(A+B)+sin(A−B)]2+[sin(A+B)−sin(A−B)]2[cos(A+B)+cos(A−B)]2=2[sin2(A+B)+sin2(A−B)][cos(A+B)+cos(A−B)]2ForA=π16,B=7π16;C=3π16,D=5π16sin(A+B)=sin(C+D)=1;cos(A+B)=cos(C+D)=0,henceΣtan2(2n+1)π16=2[1+sin23π8]cos23π8+2[1+sin2π8]cos2π8=4+4sin23π82cos23π8+4+4sin2π82cos2π8=4+2−2cos3π41+cos3π4+4+2−2cosπ41+cosπ4=6+2(1−12)+6−2(1+12)=62+22−1+62−22+1=(12+62+22+2)+(12−62−22+2)=28.
Commented by Tinkutara last updated on 21/Aug/17
ThankyouverymuchSir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com