Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 20091 by Tinkutara last updated on 21/Aug/17

Prove that Σ_(n=0) ^3 tan^2  (((2n + 1)π)/(16)) = 28.

Provethat3n=0tan2(2n+1)π16=28.

Answered by ajfour last updated on 21/Aug/17

((sin^2 A)/(cos^2 A))+((sin^2 B)/(cos^2 B))=((sin^2 Acos^2 B+cos^2 Asin^2 B)/(cos^2 Acos^2 B))  =(([sin (A+B)+sin (A−B)]^2 +[sin (A+B)−sin (A−B)]^2 )/([cos (A+B)+cos (A−B)]^2 ))  =((2[sin^2 (A+B)+sin^2 (A−B)])/([cos (A+B)+cos (A−B)]^2 ))  For A=(π/(16))  , B=((7π)/(16))   ;   C=((3π)/(16)) , D=((5π)/(16))  sin (A+B)= sin (C+D)=1   ;   cos (A+B)= cos (C+D)= 0 , hence  Σtan^2 (((2n+1)π)/(16)) =       ((2[1+sin^2  ((3π)/8)])/(cos^2  ((3π)/8))) + ((2[1+sin^2 (π/8)])/(cos^2 (π/8)))    = ((4+4sin^2 ((3π)/8))/(2cos^2  ((3π)/8))) + ((4+4sin^2 (π/8))/(2cos^2 (π/8)))    =((4+2−2cos ((3π)/4))/(1+cos ((3π)/4))) + ((4+2−2cos (π/4))/(1+cos (π/4)))    =((6+(√2))/((1−(1/(√2))))) + ((6−(√2))/((1+(1/(√2))))) =((6(√2)+2)/((√2)−1))+((6(√2)−2)/((√2)+1))    =(12+6(√2)+2(√2)+2)+(12−6(√2)−2(√2)+2)   = 28 .

sin2Acos2A+sin2Bcos2B=sin2Acos2B+cos2Asin2Bcos2Acos2B=[sin(A+B)+sin(AB)]2+[sin(A+B)sin(AB)]2[cos(A+B)+cos(AB)]2=2[sin2(A+B)+sin2(AB)][cos(A+B)+cos(AB)]2ForA=π16,B=7π16;C=3π16,D=5π16sin(A+B)=sin(C+D)=1;cos(A+B)=cos(C+D)=0,henceΣtan2(2n+1)π16=2[1+sin23π8]cos23π8+2[1+sin2π8]cos2π8=4+4sin23π82cos23π8+4+4sin2π82cos2π8=4+22cos3π41+cos3π4+4+22cosπ41+cosπ4=6+2(112)+62(1+12)=62+221+6222+1=(12+62+22+2)+(126222+2)=28.

Commented by Tinkutara last updated on 21/Aug/17

Thank you very much Sir!

ThankyouverymuchSir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com