All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 200960 by sonukgindia last updated on 27/Nov/23
Answered by Frix last updated on 27/Nov/23
t=1+x2+1⇒∫...=∫(1−1t)dt=t−lnt==1+x2+1−ln(1+x2+1)+C[1+x2+1−ln(1+x2+1)]−aa=0
=∫1−1x2+1−1xdxf(x)=x2+1−1xf(−x)=−f(x)
Answered by Sutrisno last updated on 29/Nov/23
∫−11x2+1+(x−1)x2+1+x+1.x2+1−(x+1)x2+1−(x+1)dx∫−11x2+1−1)xdxlet:x2+1=t→x=t2−1→dx=txdt∫t−1t2−1.txdt∫t−1t2−1.tt2−1dt∫t(t−1)(t+1)(t−1)dt∫t(t+1)dt=t−ln(t+1)=x2+1−ln(x2+1+1)∣−11=2−ln(2+1)−(2−ln(2+1))=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com