Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 200976 by Blackpanther last updated on 27/Nov/23

Answered by Mathspace last updated on 28/Nov/23

Σ_(n=1) ^∞ ((cos(nπ))/(ln3))=Σ_(n=1) ^∞ (((−1)^n )/(ln3))  lim_(n→∞) (−1)^n ≠0 ⇒this serie  is divergente  2)Σ_(n=1) ^∞ n^(−(1/4)) =Σ_(n=1) ^∞ (1/n^(1/4) )  n^(1/4) <n^(1/2) ⇒(1/n^(1/4) )>(1/n^(1/2) )=(1/( (√n)))  but Σ(1/( (√n)))is div. ⇒Σn^(−(1/4))   is divergente  3)Σ(1/(nlogn))  let f(t)=(1/(tlogt))  (t≥2)  f^′ (t)=−((logt+1)/((tlogt)^2 ))<0 ⇒f is  decreasing so Σ u_n  and  ∫_2 ^∞ (dt/(tlogt)) have same nature  logt=u ⇒∫_2 ^∞ (dt/(tlogt))  =∫_(log2) ^∞ ((e^u du)/(e^u u))=∫_(log2) ^∞ (du/u)  =[logu]_(log2) ^∞ =+∞ ⇒  this serie is div.

n=1cos(nπ)ln3=n=1(1)nln3limn(1)n0thisserieisdivergente2)n=1n14=n=11n14n14<n121n14>1n12=1nbutΣ1nisdiv.Σn14isdivergente3)Σ1nlognletf(t)=1tlogt(t2)f(t)=logt+1(tlogt)2<0fisdecreasingsoΣunand2dttlogthavesamenaturelogt=u2dttlogt=log2eudueuu=log2duu=[logu]log2=+thisserieisdiv.

Answered by Mathspace last updated on 28/Nov/23

4)Σ(−1)^n (((2n)!)/((n!)^2 ))  u_n =(−1)^n (((2n)!)/((n!)^2 ))  ∣(u_(n+1) /u_n )∣=(((2n+2)!)/((n+1)!)^2 ))×((n!^2 )/((2n)!))  =(((2n+2)(2n+1))/((n+1)^2 ))→4>1  ⇒this serie is divergente

4)Σ(1)n(2n)!(n!)2un=(1)n(2n)!(n!)2un+1un∣=(2n+2)!(n+1)!)2×n!2(2n)!=(2n+2)(2n+1)(n+1)24>1thisserieisdivergente

Answered by Mathspace last updated on 28/Nov/23

5)Σ_(n=1) ^∞ ((6n+6)/((−1)^n ))=6Σ_(n=1) ^∞ (n+1)(−1)^n (n+1=p)  =6Σ_(p=2) ^∞ p(−1)^(p−1)   =lim_(n→+∞) 6Σ_(p=2) ^n p(−1)^(p−1)   we have Σ_(p=2) ^n  x^p   =((1−x^(n+1) )/(1−x))−1−x  =((1−x^(n+1) −(1−x)(1+x))/(1−x))  =((1−x^(n+1) −1+x^2 )/(1−x))=((x^2 −x^(n+1) )/(1−x))  and Σ_(p=2) ^n px^(p−1) =(d/dx)(((x^2 −x^(n+1) )/(1−x)))  =(((2x−(n+1)x^n )(1−x)+x^2 −x^(n+1) )/((1−x)^2 ))  =((2x−2x^2 −(n+1)x^n +(n+1)x^(n+1) +x^2 −x^(n+1) )/((1−x)^2 ))  =((2x−x^2 −nx^n +(n+1)x^(n+1) )/((1−x)^2 ))  Σ_2 ^n p(−1)^(p−1)   =((−2−1−n(−1)^n +(n+1)(−1)^(n+1) )/4)  →∞ ⇒this serie is divergente

5)n=16n+6(1)n=6n=1(n+1)(1)n(n+1=p)=6p=2p(1)p1=limn+6p=2np(1)p1wehavep=2nxp=1xn+11x1x=1xn+1(1x)(1+x)1x=1xn+11+x21x=x2xn+11xandp=2npxp1=ddx(x2xn+11x)=(2x(n+1)xn)(1x)+x2xn+1(1x)2=2x2x2(n+1)xn+(n+1)xn+1+x2xn+1(1x)2=2xx2nxn+(n+1)xn+1(1x)22np(1)p1=21n(1)n+(n+1)(1)n+14thisserieisdivergente

Answered by Mathspace last updated on 28/Nov/23

6) ((lnn)/n) is decreasing  ∫_2 ^∞ ((logx)/x)=_ [log^2 x]_2 ^∞ −∫_2 ^∞ ((logx)/x)dx  ⇒2∫_2 ^∞ ((logx)/x)dx=(1/2)[log^2 x]_2 ^∞ =∞  ⇒Σ((logn)/n) is div.

6)lnnnisdecreasing2logxx=[log2x]22logxxdx22logxxdx=12[log2x]2=Σlognnisdiv.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com