Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 201033 by Mingma last updated on 28/Nov/23

Answered by Frix last updated on 28/Nov/23

sin (π/(14)) sin ((3π)/(14)) sin ((9π)/(14)) =x  0<x<1  Using trigonometric formulas ⇒  (1/4)(1−cos (π/7) +sin ((3π)/(14)) −sin (π/(14)))=x ★  cos (π/7) −sin ((3π)/(14)) +sin (π/(14)) =1−4x  (cos (π/7) −sin ((3π)/(14)) +sin (π/(14)))^3 =(1−4x)^3   Expanding & using trig. formulas ⇒  −((15)/4)+((31)/4)(cos (π/7) −sin ((3π)/(14)) +sin (π/(14)))=(1−4x)^3   Using ★ ⇒  x^3 −((3x^2 )/4)−((19x)/(64))+(3/(64))=0  x=(1/8)  (x=−(3/8)∧x=1 not valid)

sinπ14sin3π14sin9π14=x0<x<1Usingtrigonometricformulas14(1cosπ7+sin3π14sinπ14)=xcosπ7sin3π14+sinπ14=14x(cosπ7sin3π14+sinπ14)3=(14x)3Expanding&usingtrig.formulas154+314(cosπ7sin3π14+sinπ14)=(14x)3Usingx33x2419x64+364=0x=18(x=38x=1notvalid)

Commented by Mingma last updated on 28/Nov/23

Nice solution!

Answered by som(math1967) last updated on 28/Nov/23

let (π/(14))=θ⇒14θ=π   sinθsin3θsin9θ  =(1/(2cosθ))×2sinθcosθsin3θsin9θ  =(1/(2cosθ))×sin2θsin3θsin9θ  =(1/(4cosθ))×2sin2θsin3θsin9θ  =(1/(4cosθ))×(cosθ−cos5θ)sin9θ  =(1/(8cosθ))×[2sin9θcosθ−2sin9θcos5θ)  =(1/(8cosθ))×(sin10θ+sin8θ−sin14θ−sin4θ)  =(1/(8cosθ))[sin(π−4θ)+sin(π−6θ)−0−sin4θ]  =(1/(8cosθ))×sin6θ  =(1/(8cosθ))×cosθ=(1/8)  [ π=14θ⇒(π/2)=7θ⇒(π/2)−θ=6θ  ∴ sin((π/2)−θ)=sin6θ⇒cosθ=sin6θ]

letπ14=θ14θ=πsinθsin3θsin9θ=12cosθ×2sinθcosθsin3θsin9θ=12cosθ×sin2θsin3θsin9θ=14cosθ×2sin2θsin3θsin9θ=14cosθ×(cosθcos5θ)sin9θ=18cosθ×[2sin9θcosθ2sin9θcos5θ)=18cosθ×(sin10θ+sin8θsin14θsin4θ)=18cosθ[sin(π4θ)+sin(π6θ)0sin4θ]=18cosθ×sin6θ=18cosθ×cosθ=18[π=14θπ2=7θπ2θ=6θsin(π2θ)=sin6θcosθ=sin6θ]

Commented by Mingma last updated on 28/Nov/23

Nice solution!

Answered by Sutrisno last updated on 29/Nov/23

=((2.cos((π/(14)))sin((π/(14)))sin(((7π)/(14))−((4π)/(14)))sin(((7π)/(14))+((2π)/(14))))/(2cos((π/(14)))))  =((sin(((2π)/(14)))cos(((4π)/(14)))cos(((2π)/(14))))/(2cos((π/(14)))))  =((2.sin(((2π)/(14)))cos(((2π)/(14)))cos(((4π)/(14))))/(4cos((π/(14)))))  =((2sin(((4π)/(14)))cos(((4π)/(14))))/(8sin(((7π)/(14))+(π/(14)))))  =((sin(((8π)/(14))))/(8sin(((8π)/(14)))))  =(1/8)

=2.cos(π14)sin(π14)sin(7π144π14)sin(7π14+2π14)2cos(π14)=sin(2π14)cos(4π14)cos(2π14)2cos(π14)=2.sin(2π14)cos(2π14)cos(4π14)4cos(π14)=2sin(4π14)cos(4π14)8sin(7π14+π14)=sin(8π14)8sin(8π14)=18

Answered by MathematicalUser2357 last updated on 20/Jan/24

sin (π/(14)) sin ((3π)/(14)) sin ((9π)/(14))  =cos((π/2)−(π/(14)))cos((π/2)−((3π)/(14)))cos((π/2)−((9π)/(14)))  =(1/2)(cos((π/2)−((9π)/(14)))∙[cos{((π/2)−(π/(14)))+((π/2)−((3π)/(14)))}+cos{((π/2)−(π/(14)))−((π/2)−((3π)/(14)))}])  =(1/2)(cos((π/2)−((9π)/(14)))cos{((π/2)−(π/(14)))+((π/2)−((3π)/(14)))}+cos((π/2)−((9π)/(14)))cos{((π/2)−(π/(14)))−((π/2)−((3π)/(14)))})  =(1/2){(1/2)(cos[((π/2)−((9π)/(14)))+{((π/2)−(π/(14)))+((π/2)−((3π)/(14)))}]+cos[((π/2)−(π/(14)))−{((π/2)−(π/(14)))+((π/2)−((3π)/(14)))}])+(1/2)(cos[((π/2)−((9π)/(14)))+{((π/2)−(π/(14)))−((π/2)−((3π)/(14)))}]+cos[((π/2)−((9π)/(14)))−{((π/2)−(π/(14)))−((π/2)−((3π)/(14)))}])}  =(1/2)[(1/2){cos ((4π)/7)+cos(−((2π)/7))}+(1/2){cos(−((2π)/7))+1}]  =(1/4){cos ((4π)/7)+cos(−((2π)/7))+cos(−((2π)/7))+1}

sinπ14sin3π14sin9π14=cos(π2π14)cos(π23π14)cos(π29π14)=12(cos(π29π14)[cos{(π2π14)+(π23π14)}+cos{(π2π14)(π23π14)}])=12(cos(π29π14)cos{(π2π14)+(π23π14)}+cos(π29π14)cos{(π2π14)(π23π14)})=12{12(cos[(π29π14)+{(π2π14)+(π23π14)}]+cos[(π2π14){(π2π14)+(π23π14)}])+12(cos[(π29π14)+{(π2π14)(π23π14)}]+cos[(π29π14){(π2π14)(π23π14)}])}=12[12{cos4π7+cos(2π7)}+12{cos(2π7)+1}]=14{cos4π7+cos(2π7)+cos(2π7)+1}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com