All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 201044 by mnjuly1970 last updated on 28/Nov/23
Ω=∫01∫01(x−y)2sin2(x+y)dxdy=?
Answered by mathematicsmagic last updated on 29/Nov/23
u=x−y,v=x+y
Answered by Mathspace last updated on 29/Nov/23
Φ=∫∫[0,1]2(x−y)2sin2(x+y)dxdyweusethediffeomorphisme(x,y)→(f1(u,v),f2(u,v))=f(u,v)=(u,v)withu=x−yandv=x+y⇒x=u+v2=f1andy=−u+v2=f2∫[0,1]2f(x,y)dxdy=∫wΦof∣jΦ∣dudv0⩽x⩽1and0⩽y⩽1⇒−1⩽−y⩽00⩽x+y⩽2and−1⩽x−y⩽1⇒⇒0⩽v⩽2and−1⩽u⩽1mjΦ=(∂f1∂u∂f1∂v∂f2∂u∂f2∂v)=(1212−1212)∣mjΦ∣=14+14=12⇒I=∫∫−1⩽u⩽1and0⩽v⩽2u2sin2v12dudv=12∫−11u2du.∫02sin2vdv=12[u33]−11.∫021−cos(2v)2dv=112×2∫02(1−cos(2v))dv=16[v−12sin(2v)]02=16{2−12sin4}=13−112sin4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com