Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201070 by Rodier97 last updated on 29/Nov/23

                     Un = Σ_(k=1) ^n  (1/ ((n),(k) ))    show  that the sequence converges and  determine the limit

Un=nk=11(nk)showthatthesequenceconvergesanddeterminethelimit

Answered by Frix last updated on 29/Nov/23

(1/ ((n),(k) ))=((k!(n−k)!)/(n!))  U_n =1+Σ_(k=1) ^(n−1)  ((k!(n−k)!)/(n!)) =1+(1/(n!))Σ_(k=1) ^(n−1)  k!(n−k)!  The greatest summands are those with  k=1, k=n−1. Their sum is (2/n). The next  are k=2, k=n−2. Their sum is (4/(n^2 −n))  k=3, k=n−3 ⇒ ((12)/(n^3 −3n^2 +2n))  ...  (2/n)  (2/n)+(4/(n^2 −n))=((2n+2)/(n^2 −n))  (2/n)+(4/(n^2 −n))+((12)/(n^3 −3n^2 +2n))=((2n^2 −2n+8)/(n^3 −3n^2 +2n))  ...  We end up with ((an^p +...)/(n^(p+1) +...))  lim_(n→∞)  ((an^p +...)/(n^(p+1) +...)) =0  ⇒  lim_(n→∞)  U_n  =1

1(nk)=k!(nk)!n!Un=1+n1k=1k!(nk)!n!=1+1n!n1k=1k!(nk)!Thegreatestsummandsarethosewithk=1,k=n1.Theirsumis2n.Thenextarek=2,k=n2.Theirsumis4n2nk=3,k=n312n33n2+2n...2n2n+4n2n=2n+2n2n2n+4n2n+12n33n2+2n=2n22n+8n33n2+2n...Weendupwithanp+...np+1+...limnanp+...np+1+...=0limnUn=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com