Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201081 by Calculusboy last updated on 29/Nov/23

Answered by Rasheed.Sindhi last updated on 29/Nov/23

AnOther Way  2x^3 −x^2 −22x−24=0  let the two roots are 3a & 4a where a≠0  •2(3a)^3 −(3a)^2 −22(3a)−24=0       54a^3 −9a^2 −66a−24=0....(i)  •2(4a)^3 −(4a)^2 −22(4a)−24=0       128a^3 −16a^2 −88a−24=0....(ii)  (ii)−(i):  74a^3 −7a^2 −22a=0  74a^2 −7a−22=0  [a≠0]  (2a+1)(37a−22)=0  a=−(1/2) , (( 22 )/(37)) (false)^★     Two roots are 3(−(1/2)) & 4(−(1/2))              −(3/2) & −2       let the third root is t          −(3/2)−2+t=(1/2)^(Sum of the roots)  ∧ (−(3/2))(−2)(t)=12^(Product of the roots)                             ⇒t=4              ^★  two roots are  3(((22)/(37))) & 4(((22)/(37)))              ((66)/(37)) & ((88)/(37))       let the third root is t      ((66)/(37))+((88)/(37))+t=(1/2) ∧  (((66)/(37)))(((88)/(37)))(t)=12         t has no value(satisfying both)      ∴ a=((22)/(37)) is false.

AnOtherWay2x3x222x24=0letthetworootsare3a&4awherea02(3a)3(3a)222(3a)24=054a39a266a24=0....(i)2(4a)3(4a)222(4a)24=0128a316a288a24=0....(ii)(ii)(i):74a37a222a=074a27a22=0[a0](2a+1)(37a22)=0a=12,2237(false)Tworootsare3(12)&4(12)32&2letthethirdrootist322+t=12Sumoftheroots(32)(2)(t)=12Productoftherootst=4tworootsare3(2237)&4(2237)6637&8837letthethirdrootist6637+8837+t=12(6637)(8837)(t)=12thasnovalue(satisfyingboth)a=2237isfalse.

Commented by Calculusboy last updated on 29/Nov/23

thanks sir

thankssir

Answered by Sutrisno last updated on 29/Nov/23

x_1 =(3/4)x_2   x_1 +x_2 +x_3 =(1/2)  (3/4)x_2 +x_2 +x_3 =(1/2)→x_3 =(1/2)−(7/4)x_2   x_1 .x_2 .x_3 =12  (3/4)x_3 .x_2 ((1/2)−(7/4)x_2 )=12  21x_2 ^3 −6x_2 ^2 +192=0  (x_2 +2)(21x_2 ^2 −48x_2 +96)=0  x_2 =−2  x_1 =−(3/2)  x_3 =4

x1=34x2x1+x2+x3=1234x2+x2+x3=12x3=1274x2x1.x2.x3=1234x3.x2(1274x2)=1221x236x22+192=0(x2+2)(21x2248x2+96)=0x2=2x1=32x3=4

Commented by Calculusboy last updated on 29/Nov/23

thanks sir

thankssir

Answered by mr W last updated on 29/Nov/23

x_1 =3k  x_2 =4k  x_1 +x_2 +x_3 =(1/2)  ⇒x_3 =(1/2)−7k  x_1 x_2 +(x_1 +x_2 )x_3 =−((22)/2)=−11  12k^2 +7k((1/2)−7k)=−11  74k^2 −7k−22=0  ⇒k=((7±81)/(148))=−(1/2), ((22)/(37))  x_1 x_2 x_3 =12k^2 ((1/2)−7k)=((24)/2)=12  ⇒k^2 ((1/2)−7k)=1  only k=−(1/2) is ok  ⇒x_1 =−(3/2), x_2 =−2, x_3 =4

x1=3kx2=4kx1+x2+x3=12x3=127kx1x2+(x1+x2)x3=222=1112k2+7k(127k)=1174k27k22=0k=7±81148=12,2237x1x2x3=12k2(127k)=242=12k2(127k)=1onlyk=12isokx1=32,x2=2,x3=4

Commented by Calculusboy last updated on 29/Nov/23

thanks sir

thankssir

Answered by Rasheed.Sindhi last updated on 30/Nov/23

Let the roots are 3k,4k & λk   { ((3k+4k+λk=1/2)),((3k.4k + 4k.λk + λk.3k = −11)),((3k.4k.λk=12)) :}   ⇒ { ((k(7+λ)=1/2)),((k^2 (12 + 4λ + 3λ) = −11)),((k^3 (12λ)=12⇒λ=(1/k^3 ))) :}   ⇒ { ((k(7+(1/k^3 ))=(1/2)⇒14k^3 −k^2 +2=0)),((k^2 (12 + 7((1/k^3 ))) = −11⇒12k^3 +11k+7=0)) :}    ⇒ { (((2k+1)(7k^2 −4k+2)=0)),(((2k+1)(6k^2 −3k+7)=0)) :}⇒2k+1=0⇒k=−(1/2)   ⇒λ=(1/k^3 )=(1/((−1/2)^3 ))=−8  Roots are:  3(−(1/2))  ,  4(−(1/2))  ,  −8(−(1/2))                        −(3/2) , −2  , 4

Lettherootsare3k,4k&λk{3k+4k+λk=1/23k.4k+4k.λk+λk.3k=113k.4k.λk=12{k(7+λ)=1/2k2(12+4λ+3λ)=11k3(12λ)=12λ=1k3{k(7+1k3)=1214k3k2+2=0k2(12+7(1k3))=1112k3+11k+7=0{(2k+1)(7k24k+2)=0(2k+1)(6k23k+7)=02k+1=0k=12λ=1k3=1(1/2)3=8Rootsare:3(12),4(12),8(12)32,2,4

Commented by Calculusboy last updated on 01/Dec/23

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com