Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 201139 by cherokeesay last updated on 30/Nov/23

Commented by Frix last updated on 30/Nov/23

x≈6395.12283∧y≈171.458282  Exact solution:  x=32(8(5r^2 +6r+9)(√(r−1))+16r^2 +29r+38)  y=16(4(r^2 +4r−4)(√(r−1))+16r^2 −4r−15)  r=(2)^(1/3)   I got this by substituting  x=p^4 ∧y=p^4 q^4 ∧p, q >0  but it′s too much work to type it here.

x6395.12283y171.458282Exactsolution:x=32(8(5r2+6r+9)r1+16r2+29r+38)y=16(4(r2+4r4)r1+16r24r15)r=23Igotthisbysubstitutingx=p4y=p4q4p,q>0butitstoomuchworktotypeithere.

Answered by ajfour last updated on 01/Dec/23

(√x)=p    ,  (√y)=q  ,  a=(1/4) , z=((2p+q)/(p^2 +q^2 ))  p(a−((2p+q)/(p^2 +q^2 )))^2 =4  q(a+((2p+q)/(p^2 +q^2 )))^2 =1  a−z=(2/( (√p)))  a+z=(1/( (√q)))  2z=(((√p)−2(√q))/( (√p)(√q)))=2(((2p+q)/( p^2 +q^2 )))  2a=(((√p)+2(√q))/( (√p)(√q)))  a^2 −z^2 =(2/( (√p)(√q)))  z{((16)/((a−z)^4 ))+(1/((a+z)^4 ))}=(8/((a−z)^2 ))+(1/((a+z)^2 ))  16z(a+z)^4 +z(a−z)^4     =8(a−z)^2 (a+z)^4 +(a+z)^2 (a−z)^4   or  if z=acos 2θ  =a(h−k)  h+k=1  4(h^2 −k^2 ){(1/k^4 )+(1/(16h^4 ))}     =(2/k^2 )+(1/(4h^2 ))  ⇒  ((4h^2 )/k^4 )−(k^2 /(4h^4 ))+(1/(4h^2 ))−(4/k^2 )=(2/k^2 )+(1/(4h^2 ))  ⇒  ((4h^2 )/k^4 )−(k^2 /(4h^4 ))=(6/k^2 )  16h^6 −k^6 =24k^2 h^4   say  tan θ=(k/h)=t  t^6 +24t^2 −16=0  ⇒  t^2 =2((4)^(1/3) −(2)^(1/3) )  z=acos 2θ  (√x)=p=(4/((a−z)^2 ))=(1/(a^2 sin^4 θ))=((16)/k^2 )  (√y)=q=(1/((a+z)^2 ))=(1/(4a^2 cos^4 θ))=(4/h^2 )    (k/h)=t      ;   h+k=1  ⇒   h=(1/(1+t))=(1/(1+2((4)^(1/3) −(2)^(1/3) )))  &     k=((2((4)^(1/3) −(2)^(1/3) ))/(1+2((4)^(1/3) −(2)^(1/3) )))  (√x)=16[((1+2((4)^(1/3) −(2)^(1/3) ))/(2((4)^(1/3) −(2)^(1/3) )))]^2     ⇒  x≈ 69121.4399  (√y)=4[1+2((4)^(1/3) −(2)^(1/3) )]^2        ≈ 120.024524

x=p,y=q,a=14,z=2p+qp2+q2p(a2p+qp2+q2)2=4q(a+2p+qp2+q2)2=1az=2pa+z=1q2z=p2qpq=2(2p+qp2+q2)2a=p+2qpqa2z2=2pqz{16(az)4+1(a+z)4}=8(az)2+1(a+z)216z(a+z)4+z(az)4=8(az)2(a+z)4+(a+z)2(az)4orifz=acos2θ=a(hk)h+k=14(h2k2){1k4+116h4}=2k2+14h24h2k4k24h4+14h24k2=2k2+14h24h2k4k24h4=6k216h6k6=24k2h4saytanθ=kh=tt6+24t216=0t2=2(4323)z=acos2θx=p=4(az)2=1a2sin4θ=16k2y=q=1(a+z)2=14a2cos4θ=4h2kh=t;h+k=1h=11+t=11+2(4323)&k=2(4323)1+2(4323)x=16[1+2(4323)2(4323)]2x69121.4399y=4[1+2(4323)]2120.024524

Commented by ajfour last updated on 30/Nov/23

but i checked  my answers are  wrong!

buticheckedmyanswersarewrong!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com