Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 20115 by Tinkutara last updated on 22/Aug/17

The value of a for which the equation  (1 − a^2 )x^2  + 2ax − 1 = 0 has roots  belonging to (0, 1) is

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:{a}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\left(\mathrm{1}\:−\:{a}^{\mathrm{2}} \right){x}^{\mathrm{2}} \:+\:\mathrm{2}{ax}\:−\:\mathrm{1}\:=\:\mathrm{0}\:\mathrm{has}\:\mathrm{roots} \\ $$$$\mathrm{belonging}\:\mathrm{to}\:\left(\mathrm{0},\:\mathrm{1}\right)\:\mathrm{is} \\ $$

Answered by ajfour last updated on 22/Aug/17

roots are real and product of roots > 0  ⇒  a^2 −1 > 0    sum of roots=−((2a)/((1−a^2 ))) >0  knowing that 1−a^2  < 0   we conclude  a>0  f(0)<0 ,D≥0 , f(1)< 0  ⇒  4a^2  +4(1−a^2 ) ≥ 0  ; true for all a   f(0)=−1 <0 ; always true   f(1)=1−a^2 +2a−1=a(2−a) < 0  ⇒ a<0  or a>2  knowing a^2 >1 and a>0  we can say  a∈(2, ∞) .

$${roots}\:{are}\:{real}\:{and}\:{product}\:{of}\:{roots}\:>\:\mathrm{0} \\ $$$$\Rightarrow\:\:{a}^{\mathrm{2}} −\mathrm{1}\:>\:\mathrm{0}\:\: \\ $$$${sum}\:{of}\:{roots}=−\frac{\mathrm{2}{a}}{\left(\mathrm{1}−{a}^{\mathrm{2}} \right)}\:>\mathrm{0} \\ $$$${knowing}\:{that}\:\mathrm{1}−{a}^{\mathrm{2}} \:<\:\mathrm{0}\: \\ $$$${we}\:{conclude}\:\:{a}>\mathrm{0} \\ $$$${f}\left(\mathrm{0}\right)<\mathrm{0}\:,{D}\geqslant\mathrm{0}\:,\:{f}\left(\mathrm{1}\right)<\:\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{4}{a}^{\mathrm{2}} \:+\mathrm{4}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)\:\geqslant\:\mathrm{0}\:\:;\:{true}\:{for}\:{all}\:{a} \\ $$$$\:{f}\left(\mathrm{0}\right)=−\mathrm{1}\:<\mathrm{0}\:;\:{always}\:{true} \\ $$$$\:{f}\left(\mathrm{1}\right)=\mathrm{1}−{a}^{\mathrm{2}} +\mathrm{2}{a}−\mathrm{1}={a}\left(\mathrm{2}−{a}\right)\:<\:\mathrm{0} \\ $$$$\Rightarrow\:{a}<\mathrm{0}\:\:{or}\:{a}>\mathrm{2} \\ $$$${knowing}\:{a}^{\mathrm{2}} >\mathrm{1}\:{and}\:{a}>\mathrm{0} \\ $$$${we}\:{can}\:{say}\:\:{a}\in\left(\mathrm{2},\:\infty\right)\:. \\ $$

Commented by ajfour last updated on 22/Aug/17

yes, thanks.

$${yes},\:{thanks}. \\ $$

Commented by Tinkutara last updated on 22/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com