Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 201150 by Mingma last updated on 30/Nov/23

Answered by mr W last updated on 02/Dec/23

a=side length of square  (((a^2 +x^2 −15^2 )/(2ax)))^2 +(((a^2 +x^2 −20^2 )/(2ax)))^2 =1  a^4 +x^4 −(15^2 +20^2 )(a^2 +x^2 )+((15^4 +20^4 )/2)=0  x^4 −(15^2 +20^2 )x^2 +a^4 −(15^2 +20^2 )a^2 +((15^4 +20^4 )/2)=0  (((15^2 +20^2 )^2 )/4)≥x^4 −(15^2 +20^2 )x^2 +((15^4 +20^4 )/2)  x^4 −(15^2 +20^2 )x^2 +(((20^2 −15^2 )^2 )/4)≤0  (((20−15)^2 )/2)≤x^2 ≤(((20+15)^2 )/2)  ⇒((20−15)/( (√2)))≤x≤((20+15)/( (√2)))  x^2 +y^2 =15^2 +20^2 =625  for x, y∈N there are 2 possibilities:  (x, y)=(15, 20) or (7, 24)  a^2 =(1/2)[625±(√(4x^2 (625−x^2 )−30625))]  ⇒a^2 =((625±25(√(527)))/2) or ((625±7(√(1679)))/2)  if we only consider the cases that  the point lies inside the square, then  there are two solutions:  (x, y)=(15, 20) and the area of the  square is ((625+25(√(527)))/2) or  (x, y)=(7, 24) and the area of the  square is ((625+7(√(1679)))/2).

a=sidelengthofsquare(a2+x21522ax)2+(a2+x22022ax)2=1a4+x4(152+202)(a2+x2)+154+2042=0x4(152+202)x2+a4(152+202)a2+154+2042=0(152+202)24x4(152+202)x2+154+2042x4(152+202)x2+(202152)240(2015)22x2(20+15)2220152x20+152x2+y2=152+202=625forx,yNthereare2possibilities:(x,y)=(15,20)or(7,24)a2=12[625±4x2(625x2)30625]a2=625±255272or625±716792ifweonlyconsiderthecasesthatthepointliesinsidethesquare,thentherearetwosolutions:(x,y)=(15,20)andtheareaofthesquareis625+255272or(x,y)=(7,24)andtheareaofthesquareis625+716792.

Commented by mr W last updated on 02/Dec/23

Commented by mr W last updated on 02/Dec/23

Commented by Mingma last updated on 05/Dec/23

very elegant solution!

Answered by ajfour last updated on 02/Dec/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com