Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201162 by Calculusboy last updated on 01/Dec/23

Answered by Frix last updated on 01/Dec/23

x=y=z=1

x=y=z=1

Answered by Rasheed.Sindhi last updated on 01/Dec/23

 { ((3^x +3^y +3^z =9.....(i))),((9^x +9^y +9^z =27....(ii))),((x^z +z^y +y^x =3.....(iii))) :}  (i)^2 : (3^x +3^y +3^z )^2 =9^2   9^x +9^y +9^z +2.3^(x+y) +2.3^(y+z) +2.3^(z+x) =81  27+2(3^(x+y) +3^(y+z) +3^(z+x) )=81  2(3^(x+y) +3^(y+z) +3^(z+x) )=54  3^(x+y) +3^(y+z) +3^(z+x) =27  9^((x+y)/2) +9^((y+z)/2) +9^((z+x)/2) =27  Comparing with (ii)  ((x+y)/2)=x∧((y+z)/2)=y∧((z+x)/2)=z  −x+y=0 ∧ −y+z=0 ∧ −z+x=0  x=y=z  (iii)⇒x^x +x^x +x^x =3  3x^x =3⇒x^x =1⇒x=1  x=y=z=1✓

{3x+3y+3z=9.....(i)9x+9y+9z=27....(ii)xz+zy+yx=3.....(iii)(i)2:(3x+3y+3z)2=929x+9y+9z+2.3x+y+2.3y+z+2.3z+x=8127+2(3x+y+3y+z+3z+x)=812(3x+y+3y+z+3z+x)=543x+y+3y+z+3z+x=279x+y2+9y+z2+9z+x2=27Comparingwith(ii)x+y2=xy+z2=yz+x2=zx+y=0y+z=0z+x=0x=y=z(iii)xx+xx+xx=33xx=3xx=1x=1x=y=z=1

Commented by Calculusboy last updated on 01/Dec/23

thanks sir

thankssir

Answered by witcher3 last updated on 01/Dec/23

a^2 +b^2 +c^2 ≥ab+bc+ac cauchy shwartz  ⇒3(a^2 +b^2 +c^2 )≥(a+b+c)^2  equality if a=b=c  ⇒3.27=3(3^(2x) +3^(2y) +3^(2z) )≥(3^x +3^y +3^z )^2 =81  ⇒x=y=z  3rd equation⇒3x^x =3⇒∀x∈R(x^x =1⇔x=1)  x=y=z=1

a2+b2+c2ab+bc+accauchyshwartz3(a2+b2+c2)(a+b+c)2equalityifa=b=c3.27=3(32x+32y+32z)(3x+3y+3z)2=81x=y=z3rdequation3xx=3xR(xx=1x=1)x=y=z=1

Commented by Calculusboy last updated on 01/Dec/23

thankd sir

thankdsir

Answered by Rasheed.Sindhi last updated on 01/Dec/23

 { ((3^x +3^y +3^z =9)),((9^x +9^y +9^z =27)),((x^z +z^y +y^x =3)) :}    { ((3^(x−1) +3^(y−1) +3^(z−1) =3)),((9^(x−1) +9^(y−1) +9^(z−1) =3)),((x^z +z^y +y^x =3)) :}    { ((3^(x−1) +3^(y−1) +3^(z−1) =3.....(i))),((3^(2(x−1)) +3^(2(y−1)) +3^(2(z−1)) =3...(ii))),((x^z +z^y +y^x =3.....(iii))) :}   Comparing (i) & (ii)  2(x−1)=x−1⇒x−1=0⇒x=1  2(y−1)=y−1⇒y−1=0⇒y=1  2(z−1)=z−1⇒y−1=0⇒z=1

{3x+3y+3z=99x+9y+9z=27xz+zy+yx=3{3x1+3y1+3z1=39x1+9y1+9z1=3xz+zy+yx=3{3x1+3y1+3z1=3.....(i)32(x1)+32(y1)+32(z1)=3...(ii)xz+zy+yx=3.....(iii)Comparing(i)&(ii)2(x1)=x1x1=0x=12(y1)=y1y1=0y=12(z1)=z1y1=0z=1

Commented by Rasheed.Sindhi last updated on 01/Dec/23

You can compare in any way  for example   { ((2(x−1)=y−1⇒2x−y=1)),((2(x−1)=z−1⇒2x−z=1)) :}⇒y=z  By  same arguments  x=y=z  (iii)⇒x^x +x^x +x^x =3               3x^x =3⇒x^x =1⇒x=1  ∴ x=y=z=1

Youcancompareinanywayforexample{2(x1)=y12xy=12(x1)=z12xz=1y=zBysameargumentsx=y=z(iii)xx+xx+xx=33xx=3xx=1x=1x=y=z=1

Commented by Calculusboy last updated on 01/Dec/23

nice solution sir

nicesolutionsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com