All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 201172 by Calculusboy last updated on 01/Dec/23
Answered by Sutrisno last updated on 01/Dec/23
=∫2e2x−ex3(e2x−2ex−13)dx=13∫2e2x−ex(ex−1)2−43dxmisal:ex−1=23secθ→tanθ=3e2x−6ex−12dx=23.secθ.tanθexdθ=23(secθ.tanθ23secθ+1)dθ=13∫2(23secθ+1)2−(23secθ+1)(23secθ)2−43.23(secθ.tanθ23secθ+1)dθ=13∫2(23secθ+1)−123.tanθ.23.secθtanθdθ=13∫43sec2θ+secθdθ=13(43tanθ+ln∣secθ+tanθ∣)=13(433e2x−6ex−12+ln∣3(ex−1)2+3e2x−6ex−12∣)+c
Commented by Calculusboy last updated on 04/Dec/23
thankssir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com