All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 201266 by Mathspace last updated on 02/Dec/23
calculate∫1∞dx1+x3
Answered by witcher3 last updated on 03/Dec/23
1x3=y⇔13∫01y−561+ydy(1+y)−12=1+∑n⩾1(−12)....(−12−n+1).xnn!y−161+y=∑n⩾0Γ(12+n)(−y)ny−56Γ(12)n!⇔13∫01∑n⩾0Γ(12+n)Γ(12)n!(−1)n.y−56+ndy=13∑n⩾0(−1)nΓ(12+n)Γ(12)n!.1n+16=2∑n⩾0Γ(n+12)Γ(12).Γ(n+16)Γ(16)Γ(76+n)Γ(76)(−1)nn!=22F1(12,16,76,−1)≈1,89
Answered by Calculusboy last updated on 03/Dec/23
Solution:∫1∞(1+x3)−12dxletx−3+1=t2x=(t2−1)−13dx=−13(t2−1)−43⋅2tdt=−23(t2−1)−43tdtwhenx=∞t=1andwhenx=1t=∞I=∫∞1−23(t2+1)−43tdt[1+(t2−1)−1]12⇔I=23∫1∞(t2−1)−43tdt(t2)12(t2−1)12I=23∫1∞dt(t2−1)56=1.8947
Terms of Service
Privacy Policy
Contact: info@tinkutara.com