Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 201266 by Mathspace last updated on 02/Dec/23

calculate ∫_1 ^∞ (dx/( (√(1+x^3 ))))

calculate1dx1+x3

Answered by witcher3 last updated on 03/Dec/23

(1/x^3 )=y  ⇔(1/3)∫_0 ^1 (y^(−(5/6)) /( (√(1+y))))dy  (1+y)^(−(1/2)) =1+Σ_(n≥1) (−(1/2))....(−(1/2)−n+1).(x^n /(n!))  (y^(−(1/6)) /( (√(1+y))))=Σ_(n≥0) ((Γ((1/2)+n)(−y)^n y^(−(5/6)) )/(Γ((1/2))n!))  ⇔(1/3)∫_0 ^1 Σ_(n≥0) ((Γ((1/2)+n))/(Γ((1/2))n!))(−1)^n .y^(−(5/6)+n) dy=(1/3)Σ_(n≥0) (−1)^n ((Γ((1/2)+n))/(Γ((1/2))n!)).(1/(n+(1/6)))  =2Σ_(n≥0) ((((Γ(n+(1/2)))/(Γ((1/2)))).((Γ(n+(1/6)))/(Γ((1/6)))))/((Γ((7/6)+n))/(Γ((7/6)))))(((−1)^n )/(n!))  =2   _2 F_1 ((1/2),(1/6),(7/6),−1)≈1,89

1x3=y1301y561+ydy(1+y)12=1+n1(12)....(12n+1).xnn!y161+y=n0Γ(12+n)(y)ny56Γ(12)n!1301n0Γ(12+n)Γ(12)n!(1)n.y56+ndy=13n0(1)nΓ(12+n)Γ(12)n!.1n+16=2n0Γ(n+12)Γ(12).Γ(n+16)Γ(16)Γ(76+n)Γ(76)(1)nn!=22F1(12,16,76,1)1,89

Answered by Calculusboy last updated on 03/Dec/23

Solution: ∫_1 ^∞ (1+x^3 )^(−(1/2)) dx  let x^(−3) +1=t^2     x=(t^2 −1)^(−(1/3))      dx=−(1/3)(t^2 −1)^(−(4/3)) ∙2tdt=−(2/3)(t^2 −1)^(−(4/3)) tdt  when x=∞  t=1  and  when x=1  t=∞  I=∫_∞ ^1  ((−(2/3)(t^2 +1)^(−(4/3)) t dt)/([1+(t^2 −1)^(−1) ]^(1/2) ))   ⇔  I=(2/3)∫_1 ^∞  (((t^2 −1)^(−(4/3)) t dt)/(((t^2 )^(1/2) )/((t^2 −1)^(1/2) )))  I=(2/3)∫_1 ^∞  (dt/((t^2 −1)^(5/6) ))  =1.8947

Solution:1(1+x3)12dxletx3+1=t2x=(t21)13dx=13(t21)432tdt=23(t21)43tdtwhenx=t=1andwhenx=1t=I=123(t2+1)43tdt[1+(t21)1]12I=231(t21)43tdt(t2)12(t21)12I=231dt(t21)56=1.8947

Terms of Service

Privacy Policy

Contact: info@tinkutara.com