Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 201298 by ajfour last updated on 03/Dec/23

Commented by ajfour last updated on 03/Dec/23

Find IJ   in terms of a,b,c.

FindIJintermsofa,b,c.

Commented by mr W last updated on 05/Jan/24

IJ=r(√(1−((3p^2 )/((4R+r)^2 ))))  see Q202925

IJ=r13p2(4R+r)2seeQ202925

Answered by ajfour last updated on 03/Dec/23

BC=ai  BA=c^� =hi+kj  BI=rcot (β/2)i+rj  BR=rcot (β/2)(((hi+kj)/( (√(h^2 +k^2 )))))  eq. of JC  r_J ^� =ai+  λ{(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))i−(((rk)/( (√(h^2 +k^2 )))))j}  eq. of JA  r_J ^� =(hi+kj)+μ{(rcot (β/2)−h)i−kj}  r_J ^� =r_J ^�   a+λ(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))    =h+μ(rcot (β/2)−h)  &  ((λr)/( (√(h^2 +k^2 ))))=μ−1  ⇒ a+λ(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))      =h+(1+((λr)/( (√(h^2 +k^2 )))))(rcot (β/2)−h)  ⇒ λ=((a−h−(rcot (β/2)−h))/((r^2 /( (√(h^2 +k^2 ))))cot (β/2)−a))  IJ=[a+{((a−h−(rcot (β/2)−h))/((r^2 /( (√(h^2 +k^2 ))))cot (β/2)−a))}{(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))−rcot (β/2)}]i      +[{((a−h−(rcot (β/2)−h))/((r^2 /( (√(h^2 +k^2 ))))cot (β/2)−a))}(r/( (√(h^2 +k^2 ))))−r]j  h=ccos β    and   k=csin β  ⇒  IJ=[a+{((a−ccos β−(rcot (β/2)−ccos β))/((r^2 /c)cot (β/2)−a))}{(a−rcos βcot (β/2))−rcot (β/2)}]i      +[{((a−ccos β−(rcot (β/2)−ccos β))/((r^2 /c)cot (β/2)−a))}(r/c)−r]j  r=((2△)/(a+b+c))

BC=aiBA=c¯=hi+kjBI=rcotβ2i+rjBR=rcotβ2(hi+kjh2+k2)eq.ofJCr¯J=ai+λ{(arhh2+k2cotβ2)i(rkh2+k2)j}eq.ofJAr¯J=(hi+kj)+μ{(rcotβ2h)ikj}r¯J=r¯Ja+λ(arhh2+k2cotβ2)=h+μ(rcotβ2h)&λrh2+k2=μ1a+λ(arhh2+k2cotβ2)=h+(1+λrh2+k2)(rcotβ2h)λ=ah(rcotβ2h)r2h2+k2cotβ2aIJ=[a+{ah(rcotβ2h)r2h2+k2cotβ2a}{(arhh2+k2cotβ2)rcotβ2}]i+[{ah(rcotβ2h)r2h2+k2cotβ2a}rh2+k2r]jh=ccosβandk=csinβIJ=[a+{accosβ(rcotβ2ccosβ)r2ccotβ2a}{(arcosβcotβ2)rcotβ2}]i+[{accosβ(rcotβ2ccosβ)r2ccotβ2a}rcr]jr=2a+b+c

Commented by mr W last updated on 04/Dec/23

very nice!

verynice!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com