Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201350 by sonukgindia last updated on 05/Dec/23

Answered by Calculusboy last updated on 05/Dec/23

Solution: let y=(𝛑/4)βˆ’x   dy=βˆ’dx  when x=(𝛑/4)  y=0  and when x=0 y=(𝛑/4)  I=∫_(𝛑/4) ^0 In[1+tan((𝛑/4)βˆ’y)]βˆ’dy    (change of variable)  I=∫_0 ^(𝛑/4)  In[1+tan((𝛑/4)βˆ’x)]dx  ⇔  I=∫_0 ^(𝛑/4)  In[1+((tan((𝛑/4))βˆ’tanx)/(1+tan((𝛑/4))tanx))]dx  I=∫_0 ^(𝛑/4)  In[1+((1βˆ’tanx)/(1+tanx))]dx  ⇔  I=∫_0 ^(𝛑/4)  In[((1+tanx+1βˆ’tanx)/(1+tanx))]dx  I=∫_0 ^(𝛑/4)  In[(2/(1+tanx))]dx ⇔  I=∫_0 ^(𝛑/4) [In(2)βˆ’In(1+tanx)]dx  I=In(2)∫_0 ^(𝛑/4) dxβˆ’βˆ«_0 ^(𝛑/4) In(1+tanx)dx  I=In(2)[x]_0 ^(𝛑/4) βˆ’I  ⇔  2I=In(2)[(𝛑/4)βˆ’0]  I=(𝛑/4)Γ—(1/2)Γ—In(2)  I=((𝛑In(2))/8)

Solution:lety=Ο€4βˆ’xdy=βˆ’dxwhenx=Ο€4y=0andwhenx=0y=Ο€4I=βˆ«Ο€40In[1+tan(Ο€4βˆ’y)]βˆ’dy(changeofvariable)I=∫0Ο€4In[1+tan(Ο€4βˆ’x)]dx⇔I=∫0Ο€4In[1+tan(Ο€4)βˆ’tanx1+tan(Ο€4)tanx]dxI=∫0Ο€4In[1+1βˆ’tanx1+tanx]dx⇔I=∫0Ο€4In[1+tanx+1βˆ’tanx1+tanx]dxI=∫0Ο€4In[21+tanx]dx⇔I=∫0Ο€4[In(2)βˆ’In(1+tanx)]dxI=In(2)∫0Ο€4dxβˆ’βˆ«0Ο€4In(1+tanx)dxI=In(2)[x]0Ο€4βˆ’I⇔2I=In(2)[Ο€4βˆ’0]I=Ο€4Γ—12Γ—In(2)I=Ο€In(2)8

Answered by Sutrisno last updated on 05/Dec/23

misal :  I=∫_0 ^(Ο€/4) ln(1+tanx)dx   (∫_0 ^a f(x)dx=∫_0 ^a f(aβˆ’x)dx)  I=∫_0 ^(Ο€/4) ln(1+tan((Ο€/4)βˆ’x))dx  I=∫_0 ^(Ο€/4) ln(1+((tan(Ο€/4)βˆ’tanx)/(1+tan(Ο€/4).tanx)))dx  I=∫_0 ^(Ο€/4) ln(1+((1βˆ’tanx)/(1+tanx)))dx  I=∫_0 ^(Ο€/4) ln((2/(1+tanx)))dx  I=∫_0 ^(Ο€/4) ln(2)βˆ’βˆ«_0 ^(Ο€/4) ln(1+tanx)dx  I=∫_0 ^(Ο€/4) ln(2)βˆ’I  2I=ln(2)x∣_0 ^(Ο€/4)   I=((Ο€ln2)/8)

misal:I=βˆ«Ο€40ln(1+tanx)dx(∫0af(x)dx=∫0af(aβˆ’x)dx)I=βˆ«Ο€40ln(1+tan(Ο€4βˆ’x))dxI=βˆ«Ο€40ln(1+tanΟ€4βˆ’tanx1+tanΟ€4.tanx)dxI=βˆ«Ο€40ln(1+1βˆ’tanx1+tanx)dxI=βˆ«Ο€40ln(21+tanx)dxI=βˆ«Ο€40ln(2)βˆ’βˆ«Ο€40ln(1+tanx)dxI=βˆ«Ο€40ln(2)βˆ’I2I=ln(2)xβˆ£Ο€40I=Ο€ln28

Terms of Service

Privacy Policy

Contact: info@tinkutara.com