Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201351 by sonukgindia last updated on 05/Dec/23

Answered by Sutrisno last updated on 05/Dec/23

=∫_0 ^π (x/(1+sinx)).((1−sinx)/(1−sinx))dx  =∫_0 ^π ((x−xsinx)/(1−sin^2 x))dx  =∫_0 ^π ((x−xsinx)/(cos^2 x))dx  =∫_0 ^π xsec^2 x−xsinx.cos^(−2) xdx (use integral by parts)  =(xtanx−ln∣secx∣)−(xsecx−ln∣secx+tanx)∣_0 ^π   =π

=0πx1+sinx.1sinx1sinxdx=0πxxsinx1sin2xdx=0πxxsinxcos2xdx=0πxsec2xxsinx.cos2xdx(useintegralbyparts)=(xtanxlnsecx)(xsecxlnsecx+tanx)π0=π

Answered by Calculusboy last updated on 05/Dec/23

Solution: let y=𝛑−x  dy=−dx  when x=𝛑  y=0  and when x=0 y=𝛑  I=∫_𝛑 ^0  (((𝛑−y))/(1+sin(𝛑−y)))−dy  ⇔  I=∫_0 ^𝛑  (((𝛑−y))/(1+sin(𝛑−y)))dy  NB: sin(𝛑−y)=sin𝛑cosy−cos𝛑siny=siny  I=∫_0 ^𝛑 (𝛑/(1+siny))dy−∫_0 ^𝛑  (y/(1+siny))dy  I=𝛑∫_0 ^𝛑  (1/(1+siny))dy−I  2I=𝛑∫_0 ^𝛑  (1/(1+siny))dy  (changing of variable)  I=(𝛑/2)∫_0 ^𝛑 (1/(1+sinx))dx   ⇔   I=(𝛑/2)∫_0 ^𝛑  (1/(1+sinx))∙((1−sinx)/(1−sinx))dx  NB: (a+b)(a−b)=a^2 −b^2   ∴ (1+sinx)(1−sinx)=1−sin^2 x=cos^2 x  I=(𝛑/2)∫_0 ^𝛑  ((1−sinx)/(1−sin^2 x))dx  ⇔  I=(𝛑/2)∫_0 ^𝛑  ((1−sinx)/(cos^2 x))dx  I=(𝛑/2)∫_0 ^𝛑 [(1/(cos^2 x))−((sinx)/(cos^2 x))]dx   ⇔  I=(𝛑/2)∫_0 ^𝛑 [sec^2 x−secxtanx]dx  I=(𝛑/2)[∫_0 ^𝛑 sec^2 xdx−∫_0 ^𝛑 secxtanxdx]  I=(𝛑/2)[∣tanx∣_0 ^𝛑 −∣secx∣_0 ^𝛑 ]  I=(𝛑/2){[tan(𝛑)−tan(0)]−[sec(𝛑)−sec(0)]  I=(𝛑/2){(0−0)−(−1−1)}  I=(𝛑/2){−(−2)}  I=(𝛑/2)×2  I=𝛑

Solution:lety=πxdy=dxwhenx=πy=0andwhenx=0y=πI=π0(πy)1+sin(πy)dyI=0π(πy)1+sin(πy)dyNB:sin(πy)=sinπcosycosπsiny=sinyI=0ππ1+sinydy0πy1+sinydyI=π0π11+sinydyI2I=π0π11+sinydy(changingofvariable)I=π20π11+sinxdxI=π20π11+sinx1sinx1sinxdxNB:(a+b)(ab)=a2b2(1+sinx)(1sinx)=1sin2x=cos2xI=π20π1sinx1sin2xdxI=π20π1sinxcos2xdxI=π20π[1cos2xsinxcos2x]dxI=π20π[sec2xsecxtanx]dxI=π2[0πsec2xdx0πsecxtanxdx]I=π2[tanx0πsecx0π]I=π2{[tan(π)tan(0)][sec(π)sec(0)]I=π2{(00)(11)}I=π2{(2)}I=π2×2I=π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com