All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 201351 by sonukgindia last updated on 05/Dec/23
Answered by Sutrisno last updated on 05/Dec/23
=∫0πx1+sinx.1−sinx1−sinxdx=∫0πx−xsinx1−sin2xdx=∫0πx−xsinxcos2xdx=∫0πxsec2x−xsinx.cos−2xdx(useintegralbyparts)=(xtanx−ln∣secx∣)−(xsecx−ln∣secx+tanx)∣π0=π
Answered by Calculusboy last updated on 05/Dec/23
Solution:lety=π−xdy=−dxwhenx=πy=0andwhenx=0y=πI=∫π0(π−y)1+sin(π−y)−dy⇔I=∫0π(π−y)1+sin(π−y)dyNB:sin(π−y)=sinπcosy−cosπsiny=sinyI=∫0ππ1+sinydy−∫0πy1+sinydyI=π∫0π11+sinydy−I2I=π∫0π11+sinydy(changingofvariable)I=π2∫0π11+sinxdx⇔I=π2∫0π11+sinx⋅1−sinx1−sinxdxNB:(a+b)(a−b)=a2−b2∴(1+sinx)(1−sinx)=1−sin2x=cos2xI=π2∫0π1−sinx1−sin2xdx⇔I=π2∫0π1−sinxcos2xdxI=π2∫0π[1cos2x−sinxcos2x]dx⇔I=π2∫0π[sec2x−secxtanx]dxI=π2[∫0πsec2xdx−∫0πsecxtanxdx]I=π2[∣tanx∣0π−∣secx∣0π]I=π2{[tan(π)−tan(0)]−[sec(π)−sec(0)]I=π2{(0−0)−(−1−1)}I=π2{−(−2)}I=π2×2I=π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com