All Questions Topic List
Number Theory Questions
Previous in All Question Next in All Question
Previous in Number Theory Next in Number Theory
Question Number 201352 by cortano12 last updated on 05/Dec/23
20232023=...(mod13)
Answered by Rasheed.Sindhi last updated on 05/Dec/23
20232023≡...(mod13)20232023≡82023≡x(mod13)[∵2023≡8(mod13)]∵84≡1(mod13∴82023=(84)505(83)≡83≡5(mod13)
Answered by mr W last updated on 05/Dec/23
20232023mod13=(155×13+8)2023mod13≡82023mod13=8×(64)1011mod13=8×(5×13−1)1011mod13≡−8mod13≡5mod13
Answered by BaliramKumar last updated on 05/Dec/23
20232023=x(mod13)[ϕ(13)=12](13×155+8)(12×168+7)=x(mod13)(8)(7)=x(mod13)(82)3×81=x(mod13)(64)3×81=x(mod13)(−1)3×81=x(mod13)−8=x(mod13)1×13−8=x(mod13)5=5(mod13)x=5
Terms of Service
Privacy Policy
Contact: info@tinkutara.com