Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201374 by MrGHK last updated on 05/Dec/23

Answered by witcher3 last updated on 05/Dec/23

xy=z  ⇒ydx=z  ∫_0 ^1 ∫_0 ^y ((tan^(−1) (z)dzdy)/((1+y)(1+z)))  0≤z≤y≤1⇔     0≤z≤1  & z ≤y≤1  =∫_0 ^1 ∫_z ^1 ((tan^(−1) (z)dydz)/((1+y)(1+z)))  =∫_0 ^1 ((tan^(−1) (z)ln(2))/(1+z))dz−∫_0 ^1 ((tan^(−1) (z)ln(1+z))/(1+z))dz=A−B  A easy  tan^(−1) (z)=(1/(2i))(ln(1−iz)−ln(1+iz))  =−IM∫_0 ^1 ((ln(1+iz)ln(1+z))/(1+z))dz  ∫((ln(1+iz))/(1+z))dz,y=1+z  =∫((ln(1+i−iy))/y)dy  =ln(1+i)ln(y)−Li_2 (((iy)/(1+i)))  =ln(1+i)ln(1+z)−Li_2 ((i/(1+i))(1+z))  IBP⇒∫_0 ^1 ((ln(1+iz)ln(1+z))/(1+z))dz=Ω  =[ln(1+i)ln^2 (1+z)−ln(1+z)Li_2 ((i/(i+1))(1+z))]_0 ^1   =ln^2 (2)ln(1+i)−ln(2)Li_2 (1+i)  −∫_0 ^1 ((ln(1+i)ln(1+z))/(1+z))dz_(=ln(1+i)((ln^2 (2))/2)) +∫_0 ^1 ((Li_2 ((i/(i+1))(1+z)))/(1+z))dz  ∫((Li_2 (z))/z)dz=Li_3 (z)  Ω=((ln^2 (2))/2)ln(1+i)−ln(2)Li_2 (1+i)+Li_3 (i+1)−Li_3 ((i/(i+1)))  we Can give closedForme

xy=zydx=z010ytan1(z)dzdy(1+y)(1+z)0zy10z1&zy1=01z1tan1(z)dydz(1+y)(1+z)=01tan1(z)ln(2)1+zdz01tan1(z)ln(1+z)1+zdz=ABAeasytan1(z)=12i(ln(1iz)ln(1+iz))=IM01ln(1+iz)ln(1+z)1+zdzln(1+iz)1+zdz,y=1+z=ln(1+iiy)ydy=ln(1+i)ln(y)Li2(iy1+i)=ln(1+i)ln(1+z)Li2(i1+i(1+z))IBP01ln(1+iz)ln(1+z)1+zdz=Ω=[ln(1+i)ln2(1+z)ln(1+z)Li2(ii+1(1+z))]01=ln2(2)ln(1+i)ln(2)Li2(1+i)01ln(1+i)ln(1+z)1+zdz=ln(1+i)ln2(2)2+01Li2(ii+1(1+z))1+zdzLi2(z)zdz=Li3(z)Ω=ln2(2)2ln(1+i)ln(2)Li2(1+i)+Li3(i+1)Li3(ii+1)weCangiveclosedForme

Commented by MrGHK last updated on 05/Dec/23

really nice but i used another approach

reallynicebutiusedanotherapproach

Commented by witcher3 last updated on 05/Dec/23

share it sir , when you have Times

shareitsir,whenyouhaveTimes

Commented by MrGHK last updated on 05/Dec/23

here it is

hereitis

Terms of Service

Privacy Policy

Contact: info@tinkutara.com