Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201393 by mokys last updated on 05/Dec/23

by diffention find f ′(z) of f(z) = (z)^(1/3)

bydiffentionfindf(z)off(z)=z3

Commented by mokys last updated on 05/Dec/23

how can solve this

howcansolvethis

Answered by aleks041103 last updated on 05/Dec/23

this is trivial  f(z)=(z)^(1/3) =z^(1/3)   f ′(z)=lim_(h→0) ((f(z+h)−f(z))/h)=  =lim_(h→0)  (((z+h)^(1/3) −z^(1/3) )/h)=  =lim_(h→0)  ((e^(ln(z+h)/3) −e^(ln(z)/3) )/h)=  =e^(ln(z)/3) lim_(h→0)  ((e^(ln(1+h/z)/3) −1)/h)=  =z^(1/3) lim_(h→0)  ((e^((h/z+o(h/z))/3) −1)/h)=  =z^(1/3) lim_(h→0)  (((1+(h/(3z))+o((h/z))+o((h/(3z))+o((h/(3z)))))−1)/h)=  =z^(1/3) lim_(h→0)  ((1/(3z))+(1/z) ((o(h/z))/(h/z)))=  (iff z≠0) =(z^(1/3) /(3z))+(z^(1/3) /z)lim_(g→0) ((o(g))/g)=  =(1/3)z^(−2/3)   ⇒f ′(z)= { (((1/(3(z^2 )^(1/3) )), z≠0)),((undeff., z=0)) :}

thisistrivialf(z)=z3=z1/3f(z)=limh0f(z+h)f(z)h==limh0(z+h)1/3z1/3h==limh0eln(z+h)/3eln(z)/3h==eln(z)/3limh0eln(1+h/z)/31h==z1/3limh0eh/z+o(h/z)31h==z1/3limh0(1+h3z+o(hz)+o(h3z+o(h3z)))1h==z1/3limh0(13z+1zo(h/z)h/z)=(iffz0)=z1/33z+z1/3zlimg0o(g)g==13z2/3f(z)={13z23,z0undeff.,z=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com