Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 201418 by cortano12 last updated on 06/Dec/23

      2025^(2025)  = x (mod 17 )

20252025=x(mod17)

Answered by mr W last updated on 06/Dec/23

2025^(2025)  (mod 17)  =(119×17+2)^(2025)  (mod 17)  ≡2^(2025)  (mod 17)  =2×2^(4×506)  (mod 17)  =2×(17−1)^(506)  (mod 17)  ≡2×(−1)^(506)  (mod 17)  ≡2 (mod 17)

20252025(mod17)=(119×17+2)2025(mod17)22025(mod17)=2×24×506(mod17)=2×(171)506(mod17)2×(1)506(mod17)2(mod17)

Answered by BaliramKumar last updated on 06/Dec/23

((2025^(2025) )/(17))            [ φ(17)= 16 ]   (((17×119+2)^(16×126+9) )/(17))    (2^9 /(17)) = (((2^4 )^2 ×2^1 )/(17)) =  (((16)^2 ×2)/(17))    (((17−1)^2 ×2)/(17)) = (((−1)^2 ×2)/(17))   ((1×2)/(17)) = (2/(17)) = 2

2025202517[ϕ(17)=16](17×119+2)16×126+9172917=(24)2×2117=(16)2×217(171)2×217=(1)2×2171×217=217=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com