Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 201421 by mr W last updated on 06/Dec/23

Commented by mr W last updated on 06/Dec/23

Commented by mr W last updated on 06/Dec/23

a roof has the shape of a hyperbolic  paraboloid with the equation  z=(x^2 /(16))−(y^2 /9)+2  (x, y, z in m and z≥0)  find the time a water drop on the  roof at point A(6, −1, h) takes to   flow down along the roof.  assume there is no friction or any  other resistance.

aroofhastheshapeofahyperbolicparaboloidwiththeequationz=x216y29+2(x,y,zinmandz0)findthetimeawaterdropontheroofatpointA(6,1,h)takestoflowdownalongtheroof.assumethereisnofrictionoranyotherresistance.

Commented by ajfour last updated on 08/Dec/23

I shall explain this, its simple but  how do we find r^� (t), do tell me  guide me..

Ishallexplainthis,itssimplebuthowdowefindr¯(t),dotellmeguideme..

Commented by ajfour last updated on 08/Dec/23

(x/4)=p  ,  (y/3)=q  z=p^2 −q^2 +2  (∂z/∂p)=2p     (∂z/∂q)=−2q  N=λ(((i+2pk)/( (√(1+4p^2 )))))×(((j−2qk)/( (√(1+4q^2 )))))  =μ(1k+2qj−2pi)  ∣N∣=mgcos θ  where   cos θ=(1/( (√(1+4q^2 +4p^2 ))))  F_(net) ^� =−mgk+(mgcos θ)(((−2pi+2qj+k)/( (√(4p^2 +4q^2 +1)))))  (F_(net) ^� /(mg))=−k^� −(((2pi^� −2qj^� −k^� ))/((4p^2 +4q^2 +1)))  x=4p,  y=3q  (F_(net) ^� /(mg))=−k^� −(((8xi^� −6yj^� −k^� ))/( (64x^2 +36y^2 +1)))

x4=p,y3=qz=p2q2+2zp=2pzq=2qN=λ(i+2pk1+4p2)×(j2qk1+4q2)=μ(1k+2qj2pi)N∣=mgcosθwherecosθ=11+4q2+4p2F¯net=mgk+(mgcosθ)(2pi+2qj+k4p2+4q2+1)F¯netmg=k^(2pi^2qj^k^)(4p2+4q2+1)x=4p,y=3qF¯netmg=k^(8xi^6yj^k^)(64x2+36y2+1)

Commented by mr W last updated on 08/Dec/23

an object on the surface z=f(x,y)  moves in the direction with the  largest slope:  ▽f=(∂f/∂x)i+(∂f/∂y)j

anobjectonthesurfacez=f(x,y)movesinthedirectionwiththelargestslope:f=fxi+fyj

Answered by mr W last updated on 08/Dec/23

in following t is just a parameter,   it doesn′t mean the time.  (∂z/∂x)=(x/8)=(dx/dt)  (dx/x)=(dt/8) ⇒ln x=(t/8)+c_1  ⇒x=C_1 e^(t/8)   6=C_1   ⇒x(t)=6e^(t/8)   (∂z/∂y)=−((2y)/9)=(dy/dt)  (dy/y)=−((2dt)/9) ⇒ln y=−((2t)/9)+c_2 ⇒y=C_2 e^(−((2t)/9))   −1=C_2   ⇒y(t)=−e^(−((2t)/9))   ⇒z(t)=(9/4)e^(t/4) −(1/9)e^(−((4t)/9)) +2  h=z(0)=(6^2 /(16))−(((−1)^2 )/9)+2=((149)/(36))≈4.14m  v(t)=(√(2g(h−z(t))))    =(√(20(((149)/(36))−(9/4)e^(t/4) +(1/9)e^(−((4t)/9)) −2)))    =(√(20(((77)/(36))−(9/4)e^(t/4) +(1/9)e^(−((4t)/9)) )))  dl=(√(((dx/dt))^2 +((dy/dt))^2 +((dz/dt))^2 ))dt    =(√(((3/4)e^(t/8) )^2 +((2/9)e^(−((2t)/9)) )^2 +((9/(16))e^(t/4) +(4/(81))e^(−((4t)/9)) )^2 ))dt    =(√((9/(16))e^(t/4) +(4/(81))e^(−((4t)/9)) +((81)/(256))e^(t/2) +((16)/(6561))e^(−((8t)/9)) +(9/(162))e^(−((7t)/(36))) )) dt  dT=(dl/(v(t)))=(((√((9/(16))e^(t/4) +(4/(81))e^(−((4t)/9)) +((81)/(256))e^(t/2) +((16)/(6561))e^(−((8t)/9)) +(9/(162))e^(−((7t)/(36))) ))dt)/( (√(20(((77)/(36))−(9/4)e^(t/4) +(1/9)e^(−((4t)/9)) )))))  (9/4)e^(t_1 /4) −(1/9)e^(−((4t_1 )/9)) +2=0  ⇒t_1 ≈−6.913159307  T_1 =∫_(−6.913159307) ^0 (((√((9/(16))e^(t/4) +(4/(81))e^(−((4t)/9)) +((81)/(256))e^(t/2) +((16)/(6561))e^(−((8t)/9)) +(9/(162))e^(−((7t)/(36))) ))dt)/( (√(20(((77)/(36))−(9/4)e^(t/4) +(1/9)e^(−((4t)/9)) )))))     ≈1.505056 s    the trace of the water drop in ground  view and in 3D view see diagrams  below.

infollowingtisjustaparameter,itdoesntmeanthetime.zx=x8=dxdtdxx=dt8lnx=t8+c1x=C1et86=C1x(t)=6et8zy=2y9=dydtdyy=2dt9lny=2t9+c2y=C2e2t91=C2y(t)=e2t9z(t)=94et419e4t9+2h=z(0)=6216(1)29+2=149364.14mv(t)=2g(hz(t))=20(1493694et4+19e4t92)=20(773694et4+19e4t9)dl=(dxdt)2+(dydt)2+(dzdt)2dt=(34et8)2+(29e2t9)2+(916et4+481e4t9)2dt=916et4+481e4t9+81256et2+166561e8t9+9162e7t36dtdT=dlv(t)=916et4+481e4t9+81256et2+166561e8t9+9162e7t36dt20(773694et4+19e4t9)94et1419e4t19+2=0t16.913159307T1=6.9131593070916et4+481e4t9+81256et2+166561e8t9+9162e7t36dt20(773694et4+19e4t9)1.505056sthetraceofthewaterdropingroundviewandin3Dviewseediagramsbelow.

Commented by mr W last updated on 07/Dec/23

Commented by mr W last updated on 08/Dec/23

Commented by mr W last updated on 08/Dec/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com