Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 201427 by mathlove last updated on 06/Dec/23

 { ((sin(x+y)=cos(x−y))),((tanx−tany=1)) :}  (x,y)=(?,?)

{sin(x+y)=cos(xy)tanxtany=1(x,y)=(?,?)

Answered by Rasheed.Sindhi last updated on 06/Dec/23

 { ((sin(x+y)=cos(x−y)...(i))),((tanx−tany=1.........(ii))) :}  (x,y)=(?,?)  (i)⇒x+y=(π/2)−(x−y)            2x=π/2              x=π/4  (ii)⇒tan(π/4) −tan y=1         ⇒1−tan y=1         ⇒tan y=0         ⇒y=0  Generally (x,y)=((π/4)+2nπ, 2nπ)

{sin(x+y)=cos(xy)...(i)tanxtany=1.........(ii)(x,y)=(?,?)(i)x+y=(π/2)(xy)2x=π/2x=π/4(ii)tan(π/4)tany=11tany=1tany=0y=0Generally(x,y)=(π4+2nπ,2nπ)

Commented by mathlove last updated on 06/Dec/23

thanks

thanks

Answered by mr W last updated on 06/Dec/23

sin (x+y)=cos (x−y)=sin ((π/2)−x+y)  kπ+(−1)^k (x+y)=(π/2)−x+y  ⇒(((2k−1)π)/2)+[1+(−1)^k ]x=[1−(−1)^k ]y  case 1: k=2n  (((4n−1)π)/2)+2x=0  ⇒x=−nπ+(π/4)  tan y=tan x−1=1−1=0  ⇒y=mπ  case 2: k=2n+1  (((4n+1)π)/2)=2y  ⇒y=nπ+(π/4)  tan x=1+tan y=1+1=2  ⇒x=mπ+tan^(−1) 2    summary (with n, m∈Z):   { ((x=nπ+(π/4))),((y=mπ)) :}  or  { ((x=nπ+tan^(−1) 2)),((y=mπ+(π/4))) :}

sin(x+y)=cos(xy)=sin(π2x+y)kπ+(1)k(x+y)=π2x+y(2k1)π2+[1+(1)k]x=[1(1)k]ycase1:k=2n(4n1)π2+2x=0x=nπ+π4tany=tanx1=11=0y=mπcase2:k=2n+1(4n+1)π2=2yy=nπ+π4tanx=1+tany=1+1=2x=mπ+tan12summary(withn,mZ):{x=nπ+π4y=mπor{x=nπ+tan12y=mπ+π4

Commented by mathlove last updated on 06/Dec/23

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com