All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 201430 by hardmath last updated on 06/Dec/23
Find:235+263+299+2143=?
Answered by Rasheed.Sindhi last updated on 06/Dec/23
2(162−1+182−1+1102−1+1122−1)2(1(2(1)+4)2−1+1(2(2)+4)2−1+1(2(3)+4)2−1+1(2(4)+4)2−1)Generalterm=1(2n+4)2−1=1(2n+4−1)(2n+4+1)=1(2n+3)(2n+5)Partialfraction:a2n+3+b2n+5=1(2n+3)(2n+5)a(2n+5)+b(2n+3)=12an+2nb+5a+3b=1(2a+2b)n+(5a+3b)=12a+2b=0∧5a+3b=1b=−a∧5a−3a=1⇒a=12⇒b=−121(2n+3)(2n+5)=1/22n+3+−1/22n+5=12(12n+3−12n+5)=2∑4n=1{12(12n+3−12n+5)}=∑4n=1(12n+3−12n+5)=∑4n=1(12n+3)−∑4n=1(12n+5)=(15−17)+(17−19)+(19−111)+(111−113)=15−113=865
Commented by hardmath last updated on 06/Dec/23
thankyouprofessorcool
Terms of Service
Privacy Policy
Contact: info@tinkutara.com