Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201430 by hardmath last updated on 06/Dec/23

Find:  (2/(35)) + (2/(63)) + (2/(99)) + (2/(143)) = ?

Find:235+263+299+2143=?

Answered by Rasheed.Sindhi last updated on 06/Dec/23

2((1/(6^2 −1))+(1/(8^2 −1))+(1/(10^2 −1))+(1/(12^2 −1)))  2((1/((2(1)+4)^2 −1))+(1/((2(2)+4)^2 −1))+(1/((2(3)+4)^2 −1))+(1/((2(4)+4)^2 −1)))  General term=(1/((2n+4)^2 −1))               =(1/((2n+4−1)(2n+4+1)))=(1/((2n+3)(2n+5)))  Partial fraction:  (a/(2n+3))+(b/(2n+5))=(1/((2n+3)(2n+5)))  a(2n+5)+b(2n+3)=1  2an+2nb+5a+3b=1  (2a+2b)n+(5a+3b)=1  2a+2b=0 ∧ 5a+3b=1     b=−a     ∧ 5a−3a=1⇒a=(1/2)⇒b=−(1/2)  (1/((2n+3)(2n+5)))=((1/2)/(2n+3))+((−1/2)/(2n+5))=(1/2)((1/(2n+3))−(1/(2n+5)))  =2Σ_(n=1) ^4 {(1/2)((1/(2n+3))−(1/(2n+5)))}  =Σ_(n=1) ^4 ((1/(2n+3))−(1/(2n+5)))  =Σ_(n=1) ^4 ((1/(2n+3)))−Σ_(n=1) ^4 ((1/(2n+5)))     =((1/5)−(1/7))+((1/7)−(1/9))+((1/9)−(1/(11)))+((1/(11))−(1/(13)))  =(1/5)−(1/(13))=(8/(65))

2(1621+1821+11021+11221)2(1(2(1)+4)21+1(2(2)+4)21+1(2(3)+4)21+1(2(4)+4)21)Generalterm=1(2n+4)21=1(2n+41)(2n+4+1)=1(2n+3)(2n+5)Partialfraction:a2n+3+b2n+5=1(2n+3)(2n+5)a(2n+5)+b(2n+3)=12an+2nb+5a+3b=1(2a+2b)n+(5a+3b)=12a+2b=05a+3b=1b=a5a3a=1a=12b=121(2n+3)(2n+5)=1/22n+3+1/22n+5=12(12n+312n+5)=24n=1{12(12n+312n+5)}=4n=1(12n+312n+5)=4n=1(12n+3)4n=1(12n+5)=(1517)+(1719)+(19111)+(111113)=15113=865

Commented by hardmath last updated on 06/Dec/23

thank you professor cool

thankyouprofessorcool

Terms of Service

Privacy Policy

Contact: info@tinkutara.com