Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201441 by dimentri last updated on 06/Dec/23

Let f(x) and g(x) be given by    f(x)= (1/x) +(1/(x−2)) +(1/(x−4)) + ... +(1/(x−2018))   and     g(x)=(1/(x−1)) +(1/(x−3)) +(1/(x−5)) +...+ (1/(x−2017)).    Prove that  ∣ f(x)−g(x)∣ >2    for any non−integer real number    x satisfying 0<x<2018.

Letf(x)andg(x)begivenbyf(x)=1x+1x2+1x4+...+1x2018andg(x)=1x1+1x3+1x5+...+1x2017.Provethatf(x)g(x)>2foranynonintegerrealnumberxsatisfying0<x<2018.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com