Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201477 by York12 last updated on 07/Dec/23

how to prove that  (3d_3 +4d_2 +3d_1 )^2 ≤5(d_1 ^2 +d_2 ^2 +d_3 ^2 +(d_2 +d_1 )^2 +(d_3 +d_2 )^2 +(d_1 +d_2 +d_3 )^2 )

howtoprovethat(3d3+4d2+3d1)25(d12+d22+d32+(d2+d1)2+(d3+d2)2+(d1+d2+d3)2)

Answered by deleteduser1 last updated on 07/Dec/23

Let d_1 =a;d_2 =b;d_3 =c  5(3a^2 +4b^2 +3c^2 +4ab+4bc+2ca)≥^?   9a^2 +16b^2 +9c^2 +24bc+24ab+18ac  ⇔3a^2 +2b^2 +3c^2 ≥2ab+2bc+4ac  a^2 +b^2 ≥2ab;2a^2 +2c^2 ≥4ac;b^2 +c^2 ≥2bc  ⇒3a^2 +2b^2 +c^2 ≥2ab+2bc+4ac⇒original inequality  is true.

Letd1=a;d2=b;d3=c5(3a2+4b2+3c2+4ab+4bc+2ca)?9a2+16b2+9c2+24bc+24ab+18ac3a2+2b2+3c22ab+2bc+4aca2+b22ab;2a2+2c24ac;b2+c22bc3a2+2b2+c22ab+2bc+4acoriginalinequalityistrue.

Commented by York12 last updated on 07/Dec/23

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com