Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 201491 by tri26112004 last updated on 07/Dec/23

1. x^2 −1+((x^4 −x^2 ))^(1/3) =10x  2. (√(x−(1/x)))+(√(1−(1/x)))=x  3. (√(2x−(8/x)))+2(√(1−(2/x)))≥x  4. (√(x^2 +x))+(√(x+2))≥(√(3(x^2 −2x+2)))  5. ((√(x+5))−(√(x−3)))(1+(√(x^2 +2x−15)))≥8  6. x^2 +3x+1=(x+1)(√(x^2 +1))  7. 2x^2 +3x+7=(x+5)(√(2x^2 +1))

1.x21+x4x23=10x2.x1x+11x=x3.2x8x+212xx4.x2+x+x+23(x22x+2)5.(x+5x3)(1+x2+2x15)86.x2+3x+1=(x+1)x2+17.2x2+3x+7=(x+5)2x2+1

Commented by Rasheed.Sindhi last updated on 08/Dec/23

For 2. see also Q#200498

You can't use 'macro parameter character #' in math mode

Answered by Rasheed.Sindhi last updated on 08/Dec/23

2. (√(x−(1/x))) +(√(1−(1/x)))=x     Let (√(x−(1/x))) =a , (√(1−(1/x))) =b        a+b=x ∧ a^2 −b^2 =x−1  ⇒a−b=((a^2 −b^2 )/(a+b))=((x−1)/x)   { (( a+b=x)),((a−b=((x−1)/x)=1−(1/x))) :}     ⇒ { ((2a=x+((x−1)/x)=x−(1/x)+1=a^2 +1)),((2b=x−((x−1)/x)=x+(1/x)−1=x−(1−(1/x))=x−b^2 )) :}  ⇒ { ((a^2 −2a+1=0⇒(a−1)^2 =0⇒a=1⇒b^2 +b=a=1)),((b^2 +2b=x)) :}  ⇒(√(x−(1/x))) =1⇒x−(1/x)=1⇒x^2 −x−1=0  ⇒x_(≥0) =((1+(√(1+4)))/2)=((1+(√5) )/2)

2.x1x+11x=xLetx1x=a,11x=ba+b=xa2b2=x1ab=a2b2a+b=x1x{a+b=xab=x1x=11x{2a=x+x1x=x1x+1=a2+12b=xx1x=x+1x1=x(11x)=xb2{a22a+1=0(a1)2=0a=1b2+b=a=1b2+2b=xx1x=1x1x=1x2x1=0x0=1+1+42=1+52

Answered by esmaeil last updated on 07/Dec/23

1.  x^2 −1+x((x−(1/x)))^(1/3) =10x⇒  x−(1/x)+((x−(1/x)))^(1/3) =10  x−(1/x)=p^3 ⇒p^3 +p=10⇒  p^3 −8+(p−2)=0  (p−2)(p^2 +2p+5)=0⇒p=2  ⇒x^2 −8x−1=0⇒x=4±(√(17))

1.x21+xx1x3=10xx1x+x1x3=10x1x=p3p3+p=10p38+(p2)=0(p2)(p2+2p+5)=0p=2x28x1=0x=4±17

Answered by ajfour last updated on 07/Dec/23

★ x^2 −1+((x^4 −x^2 ))^(1/3) =10x  x−(1/x)=p  p+(p)^(1/3) =10  (10−p)^3 =p  say  10−p=t  t^3 +t=10  t=2  p=8=x−(1/x)  x^2 −8x−1=0  x=4±(√(17))

x21+x4x23=10xx1x=pp+p3=10(10p)3=psay10p=tt3+t=10t=2p=8=x1xx28x1=0x=4±17

Answered by ajfour last updated on 07/Dec/23

★★  (√(x−(1/x)))+(√(1−(1/x)))=x  (√(x−z))+(√(1−z))=x  1−z=(√(x−z))−(√(1−z))  ⇒  1−z+x=2(√(x−z))  say   (√(x−z))=p  1+p^2 =2p  p=1  ⇒  x−(1/x)=1  x^2 −x−1=0  x=((1±(√5))/2)

x1x+11x=xxz+1z=x1z=xz1z1z+x=2xzsayxz=p1+p2=2pp=1x1x=1x2x1=0x=1±52

Answered by Calculusboy last updated on 08/Dec/23

Solution:  6) square both sides  (x^2 +3x+1)^2 =[(x+1)(√(x^2 +1)) ]^2   (x^2 +3x)^2 +2(x^2 +3x)+1=(x+1)^2 (x^2 +1)  x^4 +6x^3 +9x^2 +2x^2 +6x+1=(x^2 +2x+1)(x^2 +1)  x^4 +6x^3 +11x^2 +6x+1=x^4 +2x^3 +x^2 +x^2 +2x+1  x^4 −x^4 +6x^3 −2x^3 +11x^2 −2x^2 +6x−2x+1−1=0  4x^3 +9x^2 +4x=0   (divide through by x)  4x^2 +9x+4=0    ⇔    by using x=((−b+_− (√(b^2 −4ac)))/(2a))  a=4,b=9 and c=4  x=((−9+_− (√(9^2 −4×4×4)))/(2×4))   ⇔    x=((−9+_− (√(81−64)))/8)  x=((−9+_− (√(17)))/8)  x_1 =((−9+(√(17)))/8)  𝚲  x_2 =((−9−(√(17)))/8)

Solution:6)squarebothsides(x2+3x+1)2=[(x+1)x2+1]2(x2+3x)2+2(x2+3x)+1=(x+1)2(x2+1)x4+6x3+9x2+2x2+6x+1=(x2+2x+1)(x2+1)x4+6x3+11x2+6x+1=x4+2x3+x2+x2+2x+1x4x4+6x32x3+11x22x2+6x2x+11=04x3+9x2+4x=0(dividethroughbyx)4x2+9x+4=0byusingx=b+b24ac2aa=4,b=9andc=4x=9+924×4×42×4x=9+81648x=9+178x1=9+178Λx2=9178

Answered by Calculusboy last updated on 08/Dec/23

Solution:  7) square both sides  (2x^2 +3x+7)^2 =[(x+5)(√(2x^2 +1)) ]^2   (2x^2 +3x)^2 +14(2x^2 +3x)+49=(x+5)^2 (2x^2 +1)  4x^4 +12x^3 +9x^2 +28x^2 +42x+49=(x^2 +10x+25)(2x^2 +1)  4x^4 +12x^3 +37x^2 +42x+49=2x^4 +20x^3 +50x^2 +x^2 +10x+25  4x^4 −2x^4 +12x^3 −20x^3 +37x^2 −51x^2 +42x−10x+49−25=0  2x^4 −8x^3 −14x^2 +32x+24=0   (divide through by 2)  x^4 −4x^3 −7x^2 +16x+12=0     (by using try and error)  let x=−2  ⇒ x+2=0  (−2)^4 −4(−2)^3 −7(−2)^2 +16(−2)+12=0  ⇔  0=0  (x+2)[x^3 −6x^2 +5x+6]=0  x_1 =−2  x^3 −6x^2 +5x+6=0  let x=2  ⇔  x−2=0  (2)^3 −6(2)^2 +5(2)+6=0  ⇔  0=0  (x−2)[x^2 −4x−3]=0  x−2=0  ⇒ x_2 =2  x^2 −4x−3=0  ⇔  x=((−b+_− (√(b^2 −4ac)))/(2a))  a=1,b=−4 and c=−3  x=((−(−4)+_− (√((−4)^2 −4×1×(−3))))/(2×1))  x=((4+_− (√(16+12)))/2)    ⇔   x=((4+_− (√(28)))/2)  ⇔  x=((4+_− 2(√7))/2)=2+_− (√7)  x_3 =((4+2(√7))/2)=2+(√7)   𝚲   x_4 =((4−2(√7))/2)=2−(√7)  ∴ the value for (x)=(−2, 2, 2+(√7) ,2−(√7) )

Solution:7)squarebothsides(2x2+3x+7)2=[(x+5)2x2+1]2(2x2+3x)2+14(2x2+3x)+49=(x+5)2(2x2+1)4x4+12x3+9x2+28x2+42x+49=(x2+10x+25)(2x2+1)4x4+12x3+37x2+42x+49=2x4+20x3+50x2+x2+10x+254x42x4+12x320x3+37x251x2+42x10x+4925=02x48x314x2+32x+24=0(dividethroughby2)x44x37x2+16x+12=0(byusingtryanderror)letx=2x+2=0(2)44(2)37(2)2+16(2)+12=00=0(x+2)[x36x2+5x+6]=0x1=2x36x2+5x+6=0letx=2x2=0(2)36(2)2+5(2)+6=00=0(x2)[x24x3]=0x2=0x2=2x24x3=0x=b+b24ac2aa=1,b=4andc=3x=(4)+(4)24×1×(3)2×1x=4+16+122x=4+282x=4+272=2+7x3=4+272=2+7Λx4=4272=27thevaluefor(x)=(2,2,2+7,27)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com