Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201495 by Rodier97 last updated on 07/Dec/23

          (Un)_(n≥1 ;)     (1/(nC_(2n) ^n  ))        study  convergence

(Un)n1;1nC2nnstudyconvergence

Commented by Faetmaaa last updated on 07/Dec/23

∀n≥1    0 ≤ Un ≤ (1/n)  So  lim (Un)_(n≥1)  = 0

n10Un1nSolim(Un)n1=0

Answered by MM42 last updated on 07/Dec/23

u_n =(((n!)^2 )/(n×(2n)!))    ;   u_n >0   (i)  u_(n+1) =((((n+1)!)^2 )/((n+1)×(2n+2)!))       (u_(n+1) /u_n )=((((n+1)!)^2 )/((n+1)×(2n+2)!))×((n×(2n)!)/(((n!))^2 ))     =(((n+1)^2 ×((n!))^2 )/(2(n+1)^2 ×(2n+1)(2n)!))×((n×(2n)!)/(((n!))^2 ))   =(n/(2(2n+1))) <1  ⇒u_n   is decrasing   (ii)  (i),(ii)→u_n   is  vonvergence

un=(n!)2n×(2n)!;un>0(i)un+1=((n+1)!)2(n+1)×(2n+2)!un+1un=((n+1)!)2(n+1)×(2n+2)!×n×(2n)!((n!))2=(n+1)2×((n!))22(n+1)2×(2n+1)(2n)!×n×(2n)!((n!))2=n2(2n+1)<1unisdecrasing(ii)(i),(ii)unisvonvergence

Terms of Service

Privacy Policy

Contact: info@tinkutara.com