All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 201515 by sonukgindia last updated on 08/Dec/23
Answered by Calculusboy last updated on 08/Dec/23
Solution:I=∫0π211+(1tanx)2dx⇔I=∫0π21(tanx)2+1(tanx)2dxI=∫0π2(tanx)21+(tanx)2dxlety=π2−xdy=−dxwhenx=π2y=0andwhenx=0y=π2I=∫π20[tan(π2−y)]21+[tan(π2−y)]2(−dy)⇔I=∫0π2(coty)21+(coty)2dyNb:tan(π2−y)=cotyandchangingofvariableI=∫0π2(cotx)21+(cotx)2dx(addthetwointegral)I+I=∫0π211+(cotx)2dx+∫0π2(cotx)21+(cotx)2dx2I=∫0π21+(cotx)21+(cotx)2dx⇔2I=∫0π21dx2I=x∣0π2+C2I=(π2−0)I=π4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com