Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201516 by sonukgindia last updated on 08/Dec/23

Answered by Calculusboy last updated on 08/Dec/23

Solution: let y=(𝛑/2)−x   dy=−dx  when x=(𝛑/2)   y=0  and when x=0  y=(𝛑/2)  I=∫_(𝛑/2) ^0  (1/(1+[tan((𝛑/2)−y)]^n ))(−dy)   ⇔  I=∫_0 ^(𝛑/2)  (1/(1+(coty)))dy    Nb: tan((𝛑/2)−y)=coty  changing of variable  and (cotx=(1/(tanx)))  I=∫_0 ^(𝛑/2)  (1/(1+((1/(tanx)))^n )) dx   ⇔  I=∫_0 ^(𝛑/2)  (1/(((tanx)^n +1)/((tanx)^n )))dx  I=∫_0 ^(𝛑/2)  (((tanx)^n )/(1+(tanx)^n ))dx  (add the two integral)  I+I=∫_0 ^(𝛑/2) (1/(1+(tanx)^n ))dx+∫_0 ^(𝛑/2) (((tanx)^n )/(1+(tanx)^n ))dx  2I=∫_0 ^(𝛑/2)  ((1+(tanx)^n )/(1+(tanx)^n ))dx  ⇔  2I=∫_0 ^(𝛑/2) 1dx  2I=x∣_0 ^(𝛑/2) +C  2I=((𝛑/2)−0)  I=(𝛑/4)

Solution:lety=π2xdy=dxwhenx=π2y=0andwhenx=0y=π2I=π2011+[tan(π2y)]n(dy)I=0π211+(coty)dyNb:tan(π2y)=cotychangingofvariableand(cotx=1tanx)I=0π211+(1tanx)ndxI=0π21(tanx)n+1(tanx)ndxI=0π2(tanx)n1+(tanx)ndx(addthetwointegral)I+I=0π211+(tanx)ndx+0π2(tanx)n1+(tanx)ndx2I=0π21+(tanx)n1+(tanx)ndx2I=0π21dx2I=x0π2+C2I=(π20)I=π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com