All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 201516 by sonukgindia last updated on 08/Dec/23
Answered by Calculusboy last updated on 08/Dec/23
Solution:lety=π2−xdy=−dxwhenx=π2y=0andwhenx=0y=π2I=∫π2011+[tan(π2−y)]n(−dy)⇔I=∫0π211+(coty)dyNb:tan(π2−y)=cotychangingofvariableand(cotx=1tanx)I=∫0π211+(1tanx)ndx⇔I=∫0π21(tanx)n+1(tanx)ndxI=∫0π2(tanx)n1+(tanx)ndx(addthetwointegral)I+I=∫0π211+(tanx)ndx+∫0π2(tanx)n1+(tanx)ndx2I=∫0π21+(tanx)n1+(tanx)ndx⇔2I=∫0π21dx2I=x∣0π2+C2I=(π2−0)I=π4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com