All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 201517 by sonukgindia last updated on 08/Dec/23
Answered by Calculusboy last updated on 08/Dec/23
Solution:letθ=π2−xdθ=−dxwhenx=π2θ=0andwhenx=0θ=π2I=∫0π211+(1tanx)ndx⇔I=∫0π21(tanx)n+1(tanx)ndxI=∫0π2(tanx)n1+(tanx)ndxI=∫π20[tan(π2−θ)]n1+[tan(π2−θ)]n(−dθ)Nb:tan(π2−θ)=cotθI=∫0π2(cotθ)n1+(cotθ)ndθ(changingofvariable)I=∫0π2(cotx)n1+(cotx)ndx(addthetwointegral)I+I=∫0π211+(cotx)ndx+∫0π2(cotx)n1+(cotx)ndx2I=∫0π21+(cotx)n1+(cotx)ndx⇔2I=∫0π21dx2I=x∣0π2+C2I=(π2−0)I=π4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com