Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201519 by vahid last updated on 08/Dec/23

Answered by cortano12 last updated on 08/Dec/23

(1) ∫ ((sin^3 x)/(cos^6 x)) dx = −∫ ((1−cos^2 x)/(cos^6 x)) d(cos x)

(1)sin3xcos6xdx=1cos2xcos6xd(cosx)

Answered by Calculusboy last updated on 08/Dec/23

2) I=∫(√((1−x)/(1+x))) dx  let x=cos2𝛉   dx=−2sin2𝛉d𝛉  I=∫(√((1−cos2𝛉)/(1+cos2𝛉))) −2sin2𝛉d𝛉  Nb: 1−cos2𝛉=2sin^2 𝛉  and  1+cos2𝛉=2cos^2 𝛉  I=∫(√((2sin^2 𝛉)/(2cos^2 𝛉))) ∙−2sin2𝛉d𝛉   [Nb: sin2𝛉=2sin𝛉cos𝛉  and sin^2 𝛉=((1−cos2𝛉)/2)]  I=−2∫((sin𝛉)/(cos𝛉))∙2sin𝛉cos𝛉d𝛉   ⇔ I=−4∫sin^2 𝛉d𝛉  I=−4∫(((1−cos2𝛉)/2))d𝛉  ⇔  I=−2∫(1−cos2𝛉)d𝛉  I=−2[∫1d𝛉−∫cos2𝛉d𝛉]  I=−2[𝛉−((sin2𝛉)/2)]+C  I=−2𝛉+sin𝛉+C    but 𝛉=(1/2)cos^(−1) x  I=cos^(−1) (x)+Sin[(1/2)cos^(−1) (x)]+C

2)I=1x1+xdxletx=cos2θdx=2sin2θdθI=1cos2θ1+cos2θ2sin2θdθNb:1cos2θ=2sin2θand1+cos2θ=2cos2θI=2sin2θ2cos2θ2sin2θdθ[Nb:sin2θ=2sinθcosθandsin2θ=1cos2θ2]I=2sinθcosθ2sinθcosθdθI=4sin2θdθI=4(1cos2θ2)dθI=2(1cos2θ)dθI=2[1dθcos2θdθ]I=2[θsin2θ2]+CI=2θ+sinθ+Cbutθ=12cos1xI=cos1(x)+Sin[12cos1(x)]+C

Answered by Calculusboy last updated on 08/Dec/23

I=∫((sin^3 x)/(cos^6 x))dx   Nb: sin^2 x=1−cos^2 x  I=∫((sin^2 x ∙ sinx)/(cos^6 x))dx    let u=cosx  du=−sinxdx  I=−∫(((1−cos^2 x)∙sinx)/u^6 )∙(du/(sinx))  I=−∫(((1−u^2 ))/u^6 )du  ⇔  I=−∫[(1/u^6 )−(u^2 /u^6 )]du  I=−((u^(−5) /(−5))−(u^(−3) /(−3)))+C  I=(1/(5u^5 ))−(1/(3u^3 ))+C   but u=cosx  I=(1/(5cos^5 x))−(1/(3cos^3 x))+C

I=sin3xcos6xdxNb:sin2x=1cos2xI=sin2xsinxcos6xdxletu=cosxdu=sinxdxI=(1cos2x)sinxu6dusinxI=(1u2)u6duI=[1u6u2u6]duI=(u55u33)+CI=15u513u3+Cbutu=cosxI=15cos5x13cos3x+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com