All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 201519 by vahid last updated on 08/Dec/23
Answered by cortano12 last updated on 08/Dec/23
(1)∫sin3xcos6xdx=−∫1−cos2xcos6xd(cosx)
Answered by Calculusboy last updated on 08/Dec/23
2)I=∫1−x1+xdxletx=cos2θdx=−2sin2θdθI=∫1−cos2θ1+cos2θ−2sin2θdθNb:1−cos2θ=2sin2θand1+cos2θ=2cos2θI=∫2sin2θ2cos2θ⋅−2sin2θdθ[Nb:sin2θ=2sinθcosθandsin2θ=1−cos2θ2]I=−2∫sinθcosθ⋅2sinθcosθdθ⇔I=−4∫sin2θdθI=−4∫(1−cos2θ2)dθ⇔I=−2∫(1−cos2θ)dθI=−2[∫1dθ−∫cos2θdθ]I=−2[θ−sin2θ2]+CI=−2θ+sinθ+Cbutθ=12cos−1xI=cos−1(x)+Sin[12cos−1(x)]+C
I=∫sin3xcos6xdxNb:sin2x=1−cos2xI=∫sin2x⋅sinxcos6xdxletu=cosxdu=−sinxdxI=−∫(1−cos2x)⋅sinxu6⋅dusinxI=−∫(1−u2)u6du⇔I=−∫[1u6−u2u6]duI=−(u−5−5−u−3−3)+CI=15u5−13u3+Cbutu=cosxI=15cos5x−13cos3x+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com