Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201544 by sonukgindia last updated on 08/Dec/23

Answered by aleks041103 last updated on 09/Dec/23

J=∫_0 ^( 1) ((4sin^2 (ln(x)))/(ln(1/x)))dx=−∫_0 ^( 1) ((4sin^2 (1.ln(x)))/(ln(x)))dx  I(s)=−∫_0 ^( 1) ((4sin^2 (slnx))/(ln(x)))dx, I(0)=0, J=I(1)  I ′(s)=−∫_0 ^( 1) ((8sin(s lnx)cos(s lnx) ln(x))/(ln(x)))dx=  =−∫_0 ^( 1) 4sin(2slnx)dx=−4Im(∫_0 ^( 1) e^(2isln(x)) dx)=  =−4Im(∫_0 ^( 1) x^(2is) dx)=−4Im((1/(1+2is)))=  =−4Im(((1−2is)/(1+4s^2 )))=((8s)/(1+4s^2 ))=((4(2s))/(1+4s^2 ))=  =(((1+4s^2 )′)/(1+4s^2 ))=(ln(1+4s^2 ))′  ⇒I(s)=ln(1+4s^2 )+c  I(0)=0=ln(1)+c⇒c=0  ⇒I(s)=ln(1+4s^2 )  ⇒J=∫_0 ^( 1) ((4sin^2 (ln(x)))/(ln(1/x)))dx=I(1)=ln(5)

J=014sin2(ln(x))ln(1/x)dx=014sin2(1.ln(x))ln(x)dxI(s)=014sin2(slnx)ln(x)dx,I(0)=0,J=I(1)I(s)=018sin(slnx)cos(slnx)ln(x)ln(x)dx==014sin(2slnx)dx=4Im(01e2isln(x)dx)==4Im(01x2isdx)=4Im(11+2is)==4Im(12is1+4s2)=8s1+4s2=4(2s)1+4s2==(1+4s2)1+4s2=(ln(1+4s2))I(s)=ln(1+4s2)+cI(0)=0=ln(1)+cc=0I(s)=ln(1+4s2)J=014sin2(ln(x))ln(1/x)dx=I(1)=ln(5)

Answered by Mathspace last updated on 09/Dec/23

I=−4∫_0 ^1  ((sin^2 (lnx))/(lnx))dx   (lnx=−t)  =−4∫_∞ ^0 ((sin^2 (t))/(−t))×(−e^(−t) )dt  =∫_0 ^∞  ((e^(−t)  sin^2 t)/t)dt  f(λ)=∫_0 ^∞  ((e^(−λt)  sin^2 t)/t)dt    (λ>0)  f^′ (λ)=−∫_0 ^∞ e^(−λt ) sin^2 t dt  =−∫_0 ^∞   e^(−λt)  ((1−cos(2t))/2)dt  =(1/2)∫_0 ^∞  e^(−λt) cos(2t)−(1/2)∫_0 ^∞ e^(−λt) dt  but  ∫_0 ^∞ e^(−λt) dt=[−(1/λ)e^(−λt) ]_0 ^∞ =(1/λ)  ∫_0 ^∞  e^(−λt) cos(2t)dt=Re(∫_0 ^∞ e^((−λ+2i)t) dt)  and ∫_0 ^∞  e^((−λ+2i)t) dt  =(1/(−λ+2i)) e^((−λ+2i)t) ]_0 ^∞   =((−1)/(−λ+2i))=(1/(λ−2i))=((λ+2i)/(λ^2 +4))  ⇒∫_0 ^∞ e^(−λt) cos(2t)dt=(λ/(λ^2 +4)) ⇒  f^′ (λ)=(λ/(2(λ^2 +4)))−(1/(2λ)) ⇒  f(λ)=(1/4)ln(λ^2 +4)−(1/2)lnλ +σ  =(1/2)ln((√(λ^2 +4)))−(1/2)lnλ +σ  =(1/2)ln(((√(λ^2 +4))/λ))+σ  lim_(λ→∞) f(λ)=0=σ  ∫_0 ^∞  e^(−t) ((sin^2 t)/t)dt=f(1)=(1/2)ln((√5))  =((ln5)/4)

I=401sin2(lnx)lnxdx(lnx=t)=40sin2(t)t×(et)dt=0etsin2ttdtf(λ)=0eλtsin2ttdt(λ>0)f(λ)=0eλtsin2tdt=0eλt1cos(2t)2dt=120eλtcos(2t)120eλtdtbut0eλtdt=[1λeλt]0=1λ0eλtcos(2t)dt=Re(0e(λ+2i)tdt)and0e(λ+2i)tdt=1λ+2ie(λ+2i)t]0=1λ+2i=1λ2i=λ+2iλ2+40eλtcos(2t)dt=λλ2+4f(λ)=λ2(λ2+4)12λf(λ)=14ln(λ2+4)12lnλ+σ=12ln(λ2+4)12lnλ+σ=12ln(λ2+4λ)+σlimλf(λ)=0=σ0etsin2ttdt=f(1)=12ln(5)=ln54

Commented by Mathspace last updated on 09/Dec/23

sorry I=4∫_0 ^∞  ((e^(−t) sin^2 t)/t)dt ⇒  ★I=(√5)★

sorryI=40etsin2ttdtI=5

Terms of Service

Privacy Policy

Contact: info@tinkutara.com