All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 201544 by sonukgindia last updated on 08/Dec/23
Answered by aleks041103 last updated on 09/Dec/23
J=∫014sin2(ln(x))ln(1/x)dx=−∫014sin2(1.ln(x))ln(x)dxI(s)=−∫014sin2(slnx)ln(x)dx,I(0)=0,J=I(1)I′(s)=−∫018sin(slnx)cos(slnx)ln(x)ln(x)dx==−∫014sin(2slnx)dx=−4Im(∫01e2isln(x)dx)==−4Im(∫01x2isdx)=−4Im(11+2is)==−4Im(1−2is1+4s2)=8s1+4s2=4(2s)1+4s2==(1+4s2)′1+4s2=(ln(1+4s2))′⇒I(s)=ln(1+4s2)+cI(0)=0=ln(1)+c⇒c=0⇒I(s)=ln(1+4s2)⇒J=∫014sin2(ln(x))ln(1/x)dx=I(1)=ln(5)
Answered by Mathspace last updated on 09/Dec/23
I=−4∫01sin2(lnx)lnxdx(lnx=−t)=−4∫∞0sin2(t)−t×(−e−t)dt=∫0∞e−tsin2ttdtf(λ)=∫0∞e−λtsin2ttdt(λ>0)f′(λ)=−∫0∞e−λtsin2tdt=−∫0∞e−λt1−cos(2t)2dt=12∫0∞e−λtcos(2t)−12∫0∞e−λtdtbut∫0∞e−λtdt=[−1λe−λt]0∞=1λ∫0∞e−λtcos(2t)dt=Re(∫0∞e(−λ+2i)tdt)and∫0∞e(−λ+2i)tdt=1−λ+2ie(−λ+2i)t]0∞=−1−λ+2i=1λ−2i=λ+2iλ2+4⇒∫0∞e−λtcos(2t)dt=λλ2+4⇒f′(λ)=λ2(λ2+4)−12λ⇒f(λ)=14ln(λ2+4)−12lnλ+σ=12ln(λ2+4)−12lnλ+σ=12ln(λ2+4λ)+σlimλ→∞f(λ)=0=σ∫0∞e−tsin2ttdt=f(1)=12ln(5)=ln54
Commented by Mathspace last updated on 09/Dec/23
sorryI=4∫0∞e−tsin2ttdt⇒★I=5★
Terms of Service
Privacy Policy
Contact: info@tinkutara.com