Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 201553 by Calculusboy last updated on 08/Dec/23

Answered by som(math1967) last updated on 09/Dec/23

1. ∫((1+logx−1)/((1+logx)^2 ))dx  =∫(dx/((1+logx))) −∫(dx/((1+logx)^2 ))  =(1/(1+logx))∫dx−∫{(d/dx)×(1/(1+logx))∫dx}dx        −∫(dx/((1+logx)^2 ))  =(x/(1+logx)) +∫((xdx)/(x(1+logx)^2 ))dx−∫(dx/((1+logx)^2 ))  =(x/(1+logx)) +C

1.1+logx1(1+logx)2dx=dx(1+logx)dx(1+logx)2=11+logxdx{ddx×11+logxdx}dxdx(1+logx)2=x1+logx+xdxx(1+logx)2dxdx(1+logx)2=x1+logx+C

Commented by Calculusboy last updated on 09/Dec/23

thanks

thanks

Answered by som(math1967) last updated on 09/Dec/23

2.∫(e^((mtan^(−1) x)) /((1+x^2 )(√(1+x^2 ))))dx   tan^(−1) x=t⇒(dx/(1+x^2 ))=dt  (√(1+x^2 ))=(√(1+tan^2 t))=sect   ∫((e^(mt) dt)/(sect))   I=∫coste^(mt) dt  =cost∫e^(mt) dt−∫{(d/dt)cost∫e^(mt) dt}dt  =((e^(mt) cost)/m) +(1/m)∫sinte^(mt) dt  =((e^(mt) cost)/m^2 ) +((sint)/m)∫e^(mt) dt   −(1/m)∫{(d/dt)sint∫e^(mt) dt}dt  =((e^(mt) cost)/m^2 ) +((e^(mt) sint)/m^2 ) −(1/m^2 )∫e^(mt) costdt   I=((e^(mt) (cost+sint))/m^2 )−(I/m^2 ) +C  ⇒((I(m^2 +1))/m^2 ) =((e^(mt) (cost+sint))/m^2 ) +C   ∴ I=((e^(mt) (cost+sint))/(m^2 +1)) +C_1    where t=tan^(−1) x

2.e(mtan1x)(1+x2)1+x2dxtan1x=tdx1+x2=dt1+x2=1+tan2t=sectemtdtsectI=costemtdt=costemtdt{ddtcostemtdt}dt=emtcostm+1msintemtdt=emtcostm2+sintmemtdt1m{ddtsintemtdt}dt=emtcostm2+emtsintm21m2emtcostdtI=emt(cost+sint)m2Im2+CI(m2+1)m2=emt(cost+sint)m2+CI=emt(cost+sint)m2+1+C1wheret=tan1x

Commented by Calculusboy last updated on 09/Dec/23

thanks

thanks

Answered by BaliramKumar last updated on 09/Dec/23

1.  put  1+logx = t         ⇒ dx = xdt                   logx = t−1                  x = e^(t−1)   ∫ (((t−1))/t^2 )∙e^(t−1) dt  (1/e)∫ e^t ∙((1/t)−(1/t^2 ))dt  ⇒ ∫e^x [f(x)+f^( ′) (x)]= e^x ∙f(x) +C  (1/e)∙e^t ∙(1/t) + C = (e^(t−1) /t) + C  (x/((1+logx))) + C

1.put1+logx=tdx=xdtlogx=t1x=et1(t1)t2et1dt1eet(1t1t2)dtex[f(x)+f(x)]=exf(x)+C1eet1t+C=et1t+Cx(1+logx)+C

Commented by Calculusboy last updated on 09/Dec/23

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com