Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 20157 by ajfour last updated on 23/Aug/17

Commented by ajfour last updated on 23/Aug/17

Compute the volume common to the  sphere x^2 +y^2 +z^2 =4  and  the inside of  the paraboloid  x^2 +y^2 =3z .

$${Compute}\:{the}\:{volume}\:{common}\:{to}\:{the} \\ $$$${sphere}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{4}\:\:{and}\:\:{the}\:{inside}\:{of} \\ $$$${the}\:{paraboloid}\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{3}{z}\:. \\ $$

Answered by ajfour last updated on 23/Aug/17

Commented by ajfour last updated on 23/Aug/17

Let x^2 +y^2 =r^2   ⇒ equation of sphere becomes        r^2 +z^2 =4  equation of paraboloid is        r^2 =3z  intersection is a circle of   radius r_0 .             r_0 ^2 +z_0 ^2 =4    &   r_0 ^2 =3z_0   ⇒    z_0 ^2 +3z_0 =4  ⇒   z_0 =1 , r_0 =(√3) .  If enclosed volume is V,    V=∫_0 ^(  r_0 ) (2πr)dr(Δz)      =2π∫_0 ^(  (√3)) ((√(4−r^2 ))−(r^2 /3))rdr    =2π[−(1/3)(4−r^2 )^(3/2) −(r^4 /(12))]∣_0 ^(√3)     =2π[−(1/3)+(8/3)−(3/4)] =2π(((28−9)/(12)))                          V =((19π)/6) .

$${Let}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow\:{equation}\:{of}\:{sphere}\:{becomes} \\ $$$$\:\:\:\:\:\:{r}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{4} \\ $$$${equation}\:{of}\:{paraboloid}\:{is} \\ $$$$\:\:\:\:\:\:{r}^{\mathrm{2}} =\mathrm{3}{z} \\ $$$${intersection}\:{is}\:{a}\:{circle}\:{of}\: \\ $$$${radius}\:{r}_{\mathrm{0}} .\:\:\:\:\:\:\: \\ $$$$\:\:\:\:{r}_{\mathrm{0}} ^{\mathrm{2}} +{z}_{\mathrm{0}} ^{\mathrm{2}} =\mathrm{4}\:\:\:\:\&\:\:\:{r}_{\mathrm{0}} ^{\mathrm{2}} =\mathrm{3}{z}_{\mathrm{0}} \\ $$$$\Rightarrow\:\:\:\:{z}_{\mathrm{0}} ^{\mathrm{2}} +\mathrm{3}{z}_{\mathrm{0}} =\mathrm{4}\:\:\Rightarrow\:\:\:{z}_{\mathrm{0}} =\mathrm{1}\:,\:{r}_{\mathrm{0}} =\sqrt{\mathrm{3}}\:. \\ $$$${If}\:{enclosed}\:{volume}\:{is}\:{V}, \\ $$$$\:\:{V}=\int_{\mathrm{0}} ^{\:\:{r}_{\mathrm{0}} } \left(\mathrm{2}\pi{r}\right){dr}\left(\Delta{z}\right) \\ $$$$\:\:\:\:=\mathrm{2}\pi\int_{\mathrm{0}} ^{\:\:\sqrt{\mathrm{3}}} \left(\sqrt{\mathrm{4}−{r}^{\mathrm{2}} }−\frac{{r}^{\mathrm{2}} }{\mathrm{3}}\right){rdr} \\ $$$$\:\:=\mathrm{2}\pi\left[−\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{4}−{r}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} −\frac{{r}^{\mathrm{4}} }{\mathrm{12}}\right]\mid_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \: \\ $$$$\:=\mathrm{2}\pi\left[−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{8}}{\mathrm{3}}−\frac{\mathrm{3}}{\mathrm{4}}\right]\:=\mathrm{2}\pi\left(\frac{\mathrm{28}−\mathrm{9}}{\mathrm{12}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{V}\:=\frac{\mathrm{19}\pi}{\mathrm{6}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com