Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201573 by sonukgindia last updated on 09/Dec/23

Answered by witcher3 last updated on 09/Dec/23

=∫_(−∞) ^∞ ((e^(−2024x) +e^(−2020) )/((e^(−2025x) +e^(−2019x) )((−4x^3 +(4x^2 +1)(√(1+x^2 ))−3x)^(2023) +1)))=I  =∫_(−∞) ^∞ ((e^x +e^(5x) )/((1+e^(6x) )((−4x^3 −3x+(4x^2 +1)(√(x^2 +1)))(((−4x^3 −3x−(4x^2 +1)(√(x^2 +1)))/(−4x^3 −3x−(4x^2 +1)(√(x^2 +1))))))^2 +1)))  {(4x^3 +3x)+(4x^2 +1)(√(x^2 +1))}{.(4x^3 +3x)−(4x^2 +1)(√(x^2 +1}))=−1  I=∫_(−∞) ^∞ (((e^x +e^(5x) )(4x^3 +3x+(4x^2 +1)(√(x^2 +1)))^(2023) )/((1+e^(6x) )(1+(4x^3 +3x+(4x^2 +1)(√(x^2 +1)))^(2023) ))dx  2I=∫_(−∞) ^∞ ((e^x +e^(5x) )/(1+e^(6x) ))dx  =∫_0 ^∞ ((1+x^4 )/(1+x^6 ))dx,x^6 =y  =∫_0 ^∞ ((1+y^(2/3) )/(1+y)).(y^(−(5/6)) /6)dy  =(1/6)∫_0 ^∞ (y^(−(5/6)) /(1+y))dy+(1/6)∫_0 ^∞ (y^(−(1/6)) /(1+y))dy  =(1/6)β((1/6),(5/6))+(1/6)β((5/6),(1/6))=(1/3).(π/(sin((π/6))))  =((2π)/3)  I=(π/3)

=e2024x+e2020(e2025x+e2019x)((4x3+(4x2+1)1+x23x)2023+1)=I=ex+e5x(1+e6x)((4x33x+(4x2+1)x2+1)(4x33x(4x2+1)x2+14x33x(4x2+1)x2+1))2+1){(4x3+3x)+(4x2+1)x2+1}{.(4x3+3x)(4x2+1)x2+1}=1I=(ex+e5x)(4x3+3x+(4x2+1)x2+1)2023(1+e6x)(1+(4x3+3x+(4x2+1)x2+1)2023dx2I=ex+e5x1+e6xdx=01+x41+x6dx,x6=y=01+y231+y.y566dy=160y561+ydy+160y161+ydy=16β(16,56)+16β(56,16)=13.πsin(π6)=2π3I=π3

Commented by Anonim_X last updated on 09/Dec/23

nice

Commented by Calculusboy last updated on 09/Dec/23

nice solution

nicesolution

Commented by witcher3 last updated on 10/Dec/23

thank You

thankYou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com