Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 201599 by mr W last updated on 09/Dec/23

Commented by deleteduser1 last updated on 09/Dec/23

Are those numbers areas or lengths?

Arethosenumbersareasorlengths?

Commented by mr W last updated on 09/Dec/23

they are lengths.

theyarelengths.

Answered by mr W last updated on 10/Dec/23

Commented by mr W last updated on 10/Dec/23

3x=y+z  3x+((20−p)/p)y=3×((20−p)/(3p))z  ⇒y+z=(((20−p)(z−y))/p)  x+((20−p)/(3p))z=((20−p)/p)y  ⇒y+z=(((20−p)(3y−z))/p)  z−y=3y−z⇒z=2y ⇒x=y  y+2y=(((20−p)(2y−y))/p)  ⇒3=((20−p)/p) ⇒p=5  ((BF)/(FA))=(z/y)=2  ((BF^2 +5^2 −9^2 )/(2×5×BF))=−((FA^2 +5^2 −6^2 )/(2×5×FA))  BF^2 =−2×FA^2 +78  FA^2 =13  ⇒FA=(√(13)) ⇒BA=3(√(13))  BA^2 =9×13=117=9^2 +6^2   ⇒AD⊥BE  x=((3×6)/2)=9  Δ_(ABC) =((20)/p)(y+z)=12x=12×9=108 ✓

3x=y+z3x+20ppy=3×20p3pzy+z=(20p)(zy)px+20p3pz=20ppyy+z=(20p)(3yz)pzy=3yzz=2yx=yy+2y=(20p)(2yy)p3=20ppp=5BFFA=zy=2BF2+52922×5×BF=FA2+52622×5×FABF2=2×FA2+78FA2=13FA=13BA=313BA2=9×13=117=92+62ADBEx=3×62=9ΔABC=20p(y+z)=12x=12×9=108

Terms of Service

Privacy Policy

Contact: info@tinkutara.com