Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201613 by hardmath last updated on 09/Dec/23

x,y,z ∈ R   { ((xy + yz + zx = 3)),((x + y + z = 5)) :}     →    max(z) = ?

x,y,zR{xy+yz+zx=3x+y+z=5max(z)=?

Answered by aleks041103 last updated on 09/Dec/23

x+y+z=5⇒z=5−x−y  ⇒xy+(x+y)(5−(x+y))=3  xy+5x+5y−x^2 −2xy−y^2 =3  ⇒x^2 +xy+y^2 −5x−5y+3=0 (1)  max z ⇔ dz=0=−dx−dy⇒dx=−dy  d (1)  2xdx+ydx+xdy+2ydy−5dx−5dy=0  (2x+y−5)dx+(x+2y−5)dy=0  dx=−dy  ⇒(2x+y−5)−(x+2y−5)=x−y=0  ⇒x=y  (1)⇒x^2 +x^2 +x^2 −5x−5x+3=0  3x^2 −10x+3=0  x_(1,2) =((10±(√(100−4.3.3)))/6)=((5±4)/3)=(1/3);3  ⇒z_1 =5−2x_1 =((13)/3)  z_2 =5−2x_2 =−1  ⇒max(z)=((13)/3)

x+y+z=5z=5xyxy+(x+y)(5(x+y))=3xy+5x+5yx22xyy2=3x2+xy+y25x5y+3=0(1)maxzdz=0=dxdydx=dyd(1)2xdx+ydx+xdy+2ydy5dx5dy=0(2x+y5)dx+(x+2y5)dy=0dx=dy(2x+y5)(x+2y5)=xy=0x=y(1)x2+x2+x25x5x+3=03x210x+3=0x1,2=10±1004.3.36=5±43=13;3z1=52x1=133z2=52x2=1max(z)=133

Commented by aleks041103 last updated on 09/Dec/23

the geometric idea is:  (1) → ellipse  On another note:  z=5−(x+y)  x+y= ((x),(y) ) .  ((1),(1) ) =(√2) n^→ .r^→   ⇒x+y=(√2)×(distance from the line x+y=0)  ⇒z=5−(x+y) is max(min)  when the distance of (x,y) from the line  x+y=0 is min(max).  ⇒we want to find the points  at which the tangents to the ellipse  are parallel to the ellipse.

thegeometricideais:(1)ellipseOnanothernote:z=5(x+y)x+y=(xy).(11)=2n.rx+y=2×(distancefromthelinex+y=0)z=5(x+y)ismax(min)whenthedistanceof(x,y)fromthelinex+y=0ismin(max).wewanttofindthepointsatwhichthetangentstotheellipseareparalleltotheellipse.

Commented by aleks041103 last updated on 09/Dec/23

Commented by hardmath last updated on 10/Dec/23

perfect dear professor thank you so much

perfectdearprofessorthankyousomuch

Answered by mr W last updated on 10/Dec/23

say t=x+y  z=5−t  to find max(z), we only need to find  min(t).  xy+(x+y)z=3  xy+(x+y)(5−(x+y))=3  (x+y)^2 −5(x+y)+3=xy≤(((x+y)/2))^2 =(((x+y)^2 )/4)  3(x+y)^2 −20(x+y)+12≤0  or 3t^2 −20t+12≤0  (3t−2)(t−6)≤0  ⇒(2/3)≤t≤6  i.e. min(t)=(2/3), max(t)=6  ⇒max(z)=5−(2/3)=((13)/3)  ⇒min(z)=5−6=−1

sayt=x+yz=5ttofindmax(z),weonlyneedtofindmin(t).xy+(x+y)z=3xy+(x+y)(5(x+y))=3(x+y)25(x+y)+3=xy(x+y2)2=(x+y)243(x+y)220(x+y)+120or3t220t+120(3t2)(t6)023t6i.e.min(t)=23,max(t)=6max(z)=523=133min(z)=56=1

Commented by mr W last updated on 10/Dec/23

A.M.≥G.M.  ((a+b)/2)≥(√(ab)) ⇒ab≤(((a+b)/2))^2

A.M.G.M.a+b2abab(a+b2)2

Commented by hardmath last updated on 10/Dec/23

perfect dear professor thank you so much

perfectdearprofessorthankyousomuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com