Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201654 by mokys last updated on 10/Dec/23

Answered by aleks041103 last updated on 10/Dec/23

First part:  M= ((4,3),(1,(−2)) )   eigenvals:  det(M−xI)= determinant (((4−x),3),(1,(−2−x)))=0  ⇒(x−4)(x+2)−3=0  x^2 −2x−11=0  x_(1,2) =((2±(√(4+4.11)))/2)=1±2(√3)    eigenvecs:  1) ker(M−x_1 I)=?   (((3−2(√3)),3),(1,(−3−2(√3))) )  ((p),(q) ) = ((0),(0) )  ⇒p−(3+2(√3))q=0⇒ ((p),(q) ) = (((3+2(√3))),(1) ) q  ⇒ker(M−x_1 I)=span( (((3+2(√3))),(1) ))=span(v_1 )  2) ker(M−x_2 I)=?   (((3+2(√3)),3),(1,(−3+2(√3))) )  ((p),(q) ) = ((0),(0) )  ⇒p−(3−2(√3))q=0⇒ ((p),(q) ) = (((3−2(√3))),(1) ) q  ⇒ker(M−x_2 I)=span( (((3−2(√3))),(1) ))=span(v_2 )    Eigen representation of M  M=P D P^( −1)   D= (((1+2(√3)),0),(0,(1−2(√3))) )  P =(v_1   v_2 )= (((3+2(√3)),(3−2(√3))),(1,1) ), detP =4(√3)  ⇒P^( −1) =(1/(detP))  ((1,(2(√3)−3)),((−1),(2(√3)+3)) )   P^( −1) =(1/(4(√3))) ((1,(2(√3)−3)),((−1),(2(√3)+3)) )  ⇒M=PDP^( −1) =  =(1/(4(√3)))  (((3+2(√3)),(3−2(√3))),(1,1) ) (((1+2(√3)),0),(0,(1−2(√3))) ) ((1,(2(√3)−3)),((−1),(2(√3)+3)) )

Firstpart:M=(4312)eigenvals:det(MxI)=|4x312x|=0(x4)(x+2)3=0x22x11=0x1,2=2±4+4.112=1±23eigenvecs:1)ker(Mx1I)=?(32331323)(pq)=(00)p(3+23)q=0(pq)=(3+231)qker(Mx1I)=span((3+231))=span(v1)2)ker(Mx2I)=?(3+23313+23)(pq)=(00)p(323)q=0(pq)=(3231)qker(Mx2I)=span((3231))=span(v2)EigenrepresentationofMM=PDP1D=(1+2300123)P=(v1v2)=(3+2332311),detP=43P1=1detP(1233123+3)P1=143(1233123+3)M=PDP1==143(3+2332311)(1+2300123)(1233123+3)

Answered by aleks041103 last updated on 10/Dec/23

Second part:  (dv^→ /dt)=Mv^→ +f^→ (t)  M=PDP^( −1)   ⇒(dv^→ /dt)=PDP^( −1) v^→ +f^→ (t)          ∣ P^( −1) (∙)  (d/dt)(P^( −1) v^→ )=D(P^( −1) v^→ )+(P^( −1) f^→ (t))  let P^( −1) v^→ =u^→ = ((u_1 ),(u_2 ) ) and P^( −1) f^→ (t)=g^→ (t)= (((g_1 (t))),((g_2 (t))) )  and D= ((λ_1 ,0),(0,λ_2 ) )  then  (du^→ /dt)=Du^→ +g^→  ⇔  { ((u_1 ′=λ_1 u_1 +g_1 )),((u_2 ′=λ_2 u_2 +g_2 )) :}  so this simplifies to solving two  simple independent first order ODEs.  two  Then:   ((x),(y) ) = P  ((u_1 ),(u_2 ) )

Secondpart:dvdt=Mv+f(t)M=PDP1dvdt=PDP1v+f(t)P1()ddt(P1v)=D(P1v)+(P1f(t))letP1v=u=(u1u2)andP1f(t)=g(t)=(g1(t)g2(t))andD=(λ100λ2)thendudt=Du+g{u1=λ1u1+g1u2=λ2u2+g2sothissimplifiestosolvingtwosimpleindependentfirstorderODEs.twoThen:(xy)=P(u1u2)

Answered by aleks041103 last updated on 10/Dec/23

P^( −1) =(1/(4(√3))) ((1,(2(√3)−3)),((−1),(2(√3)+3)) )  g=P^( −1) f=(1/(4(√3))) ((1,(2(√3)−3)),((−1),(2(√3)+3)) ) ((t^2 ),(e^t ) ) =  = (((((2(√3)−3)e^t +t^2 )/(4(√3)))),((((2(√(3+))3)e^t −t^2 )/(4(√3)))) )  =  ((g_1 ),(g_2 ) )  D= (((1+2(√3)),0),(0,(1−2(√3))) ) ⇒ { ((λ_1 =1+2(√3))),((λ_2 =1−2(√3))) :}  ⇒ { ((u_1 ′=(1+2(√3))u_1 +(((2(√3)−3)e^t +t^2 )/(4(√3))))),((u_2 ′=(1−2(√3))u_2 +(((2(√3)+3)e^t −t^2 )/(4(√3))))) :}

P1=143(1233123+3)g=P1f=143(1233123+3)(t2et)==((233)et+t243(23+3)ett243)=(g1g2)D=(1+2300123){λ1=1+23λ2=123{u1=(1+23)u1+(233)et+t243u2=(123)u2+(23+3)ett243

Answered by aleks041103 last updated on 10/Dec/23

u_1 ′=(1+2(√3))u_1 +(((2(√3)−3)e^t +t^2 )/(4(√3)))  partial soln:  u_1 =Ae^t +Bt^2 +Ct+D  ⇒Ae^t +2Bt+C=(1+2(√3))(Ae^t +Bt^2 +Ct+D)+((2−(√3))/4)e^t +(1/(4(√3)))t^2   ⇒ { ((A=(1+2(√3))A+((2−(√3))/4))),((0=(1+2(√3))B+(1/(4(√3))))),((2B=(1+2(√3))C)),((C=(1+2(√3))D)) :}  ⇒A=(((√3)−2)/(8(√3)));B=−(1/(4(√3)(1+2(√3)))); C=−(1/(2(√3)(1+2(√3))^2 ));  D=−(1/(2(√3)(1+2(√3))^3 ))  ⇒u_1 =(((√3)−2)/(8(√3)))e^t −(([(1+2(√3))t]^2 +2[(1+2(√3))t]+2)/(4(√3)(1+2(√3))^3 ))  homogenuous soln:  u_1 ′=(1+2(√3))u_1 ⇒u_1 =C_1 e^((1+2(√3))t)     ⇒u_1 =C_1 e^((1+2(√3))t) +(((√3)−2)/(8(√3)))e^t −(([(1+2(√3))t]^2 +2[(1+2(√3))t]+2)/(4(√3)(1+2(√3))^3 ))

u1=(1+23)u1+(233)et+t243partialsoln:u1=Aet+Bt2+Ct+DAet+2Bt+C=(1+23)(Aet+Bt2+Ct+D)+234et+143t2{A=(1+23)A+2340=(1+23)B+1432B=(1+23)CC=(1+23)DA=3283;B=143(1+23);C=123(1+23)2;D=123(1+23)3u1=3283et[(1+23)t]2+2[(1+23)t]+243(1+23)3homogenuoussoln:u1=(1+23)u1u1=C1e(1+23)tu1=C1e(1+23)t+3283et[(1+23)t]2+2[(1+23)t]+243(1+23)3

Answered by aleks041103 last updated on 10/Dec/23

u_2 ′=(1−2(√3))u_2 +(((2(√3)+3)e^t −t^2 )/(4(√3)))  partial soln:  u_2 =Ae^t +Bt^2 +Ct+D  ⇒Ae^t +2Bt+C=(1−2(√3))(Ae^t +Bt^2 +Ct+D)+((2+(√3))/4)e^t −(1/(4(√3)))t^2   ⇒ { ((A=(1−2(√3))A+((2+(√3))/4))),((0=(1−2(√3))B−(1/(4(√3))))),((2B=(1−2(√3))C)),((C=(1−2(√3))D)) :}  ⇒A=((2+(√3))/(8(√3)));B=(1/(4(√3)(1−2(√3)))); C=(1/(2(√3)(1−2(√3))^2 ));  D=(1/(2(√3)(1−2(√3))^3 ))  ⇒u_2 =((2+(√3))/(8(√3)))e^t +(([(1−2(√3))t]^2 +2[(1−2(√3))t]+2)/(4(√3)(1−2(√3))^3 ))  homogenuous soln:  u_2 ′=(1−2(√3))u_2 ⇒u_2 =C_2 e^((1−2(√3))t)     ⇒u_2 =C_2 e^((1−2(√3))t) +((2+(√3))/(8(√3)))e^t +(([(1−2(√3))t]^2 +2[(1−2(√3))t]+2)/(4(√3)(1−2(√3))^3 ))

u2=(123)u2+(23+3)ett243partialsoln:u2=Aet+Bt2+Ct+DAet+2Bt+C=(123)(Aet+Bt2+Ct+D)+2+34et143t2{A=(123)A+2+340=(123)B1432B=(123)CC=(123)DA=2+383;B=143(123);C=123(123)2;D=123(123)3u2=2+383et+[(123)t]2+2[(123)t]+243(123)3homogenuoussoln:u2=(123)u2u2=C2e(123)tu2=C2e(123)t+2+383et+[(123)t]2+2[(123)t]+243(123)3

Answered by aleks041103 last updated on 10/Dec/23

Finally   ((x),(y) ) = P  ((u_1 ),(u_2 ) )  P =  (((3+2(√3)),(3−2(√3))),(1,1) )   ((u_1 ),(u_2 ) ) =  (((C_1 e^((1+2(√3))t) +(((√3)−2)/(8(√3)))e^t −(([(1+2(√3))t]^2 +2[(1+2(√3))t]+2)/(4(√3)(1+2(√3))^3 )))),((C_2 e^((1−2(√3))t) +((2+(√3))/(8(√3)))e^t +(([(1−2(√3))t]^2 +2[(1−2(√3))t]+2)/(4(√3)(1−2(√3))^3 )))) )  ⇒x=3(u_1 +u_2 )+2(√3)(u_1 −u_2 )  y=u_1 +u_2   ⇒u_1 +u_2 =C_1 e^((1+2(√3))t) +C_2 e^((1−2(√3))t) +(e^t /4)+(([(1−2(√3))t]^2 +2[(1−2(√3))t]+2)/(4(√3)(1−2(√3))^3 ))−(([(1+2(√3))t]^2 +2[(1+2(√3))t]+2)/(4(√3)(1+2(√3))^3 ))=  =C_1 e^((1+2(√3))t) +C_2 e^((1−2(√3))t) +(e^t /4)−(t^2 /(11))+((4t)/(121))+((30)/(1331))  u_1 −u_2 =C_1 e^((1+2(√3))t) −C_2 e^((1−2(√3))t) −(e^t /(2(√3)))+(t^2 /(11.2(√3)))−((26t)/(121.2(√3)))−((74)/(1331.2(√3)))    ⇒  x=(3+2(√3))C_1 e^((1+2(√3))t) +(3−2(√3))C_2 e^((1−2(√3))t) −(e^t /4)−((2t^2 )/(11))−((14t)/(121))+((16)/(1331))  y=C_1 e^((1+2(√3))t) +C_2 e^((1−2(√3))t) +(e^t /4)−(t^2 /(11))+((4t)/(121))+((30)/(1331))

Finally(xy)=P(u1u2)P=(3+2332311)(u1u2)=(C1e(1+23)t+3283et[(1+23)t]2+2[(1+23)t]+243(1+23)3C2e(123)t+2+383et+[(123)t]2+2[(123)t]+243(123)3)x=3(u1+u2)+23(u1u2)y=u1+u2u1+u2=C1e(1+23)t+C2e(123)t+et4+[(123)t]2+2[(123)t]+243(123)3[(1+23)t]2+2[(1+23)t]+243(1+23)3==C1e(1+23)t+C2e(123)t+et4t211+4t121+301331u1u2=C1e(1+23)tC2e(123)tet23+t211.2326t121.23741331.23x=(3+23)C1e(1+23)t+(323)C2e(123)tet42t21114t121+161331y=C1e(1+23)t+C2e(123)t+et4t211+4t121+301331

Terms of Service

Privacy Policy

Contact: info@tinkutara.com