Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201679 by cherokeesay last updated on 10/Dec/23

Answered by Rasheed.Sindhi last updated on 10/Dec/23

((1−(√(x^2 +1))))^(1/6)  +(((√(x^2 +1)) −1))^(1/6)  =1  a+b=1⇒b=1−a  a^6 +b^6 =1−(√(x^2 +1)) + (√(x^2 +1)) −1=0  (a^2 +b^2 )(a^4 −a^2 b^2 +b^4 )=0  a^2 +b^2 =0 ∣ a^4 −a^2 b^2 +b^4 =0^★   (a+b)^2 −2ab=0  1−2ab=0  1−2a(1−a)=0  2a^2 −2a+1=0  a=((2±(√(4−8)))/4)=((1±i)/2)  ((1−(√(x^2 +1))))^(1/6)  =((1±i)/2)  1−(√(x^2 +1)) =(((1±i)/2))^6   (√(x^2 +1)) =1−(((1±i)/2))^6   x^2 +1 =(1−(((1±i)/2))^6 )^2   x=±(√((1−(((1±i)/2))^6 )^2 −1))      =±(√(1−2(((1±i)/2))^6 +(((1±i)/2))^(12) −1))      =±(√(−2(((1±i)/2))^6 +(((1±i)/2))^(12) ))      =±(((1±i)/2))^6 (√(−2+(((1±i)/2))^6 ))   ....  ...

1x2+16+x2+116=1a+b=1b=1aa6+b6=1x2+1+x2+11=0(a2+b2)(a4a2b2+b4)=0a2+b2=0a4a2b2+b4=0(a+b)22ab=012ab=012a(1a)=02a22a+1=0a=2±484=1±i21x2+16=1±i21x2+1=(1±i2)6x2+1=1(1±i2)6x2+1=(1(1±i2)6)2x=±(1(1±i2)6)21=±12(1±i2)6+(1±i2)121=±2(1±i2)6+(1±i2)12=±(1±i2)62+(1±i2)6.......

Answered by Rasheed.Sindhi last updated on 10/Dec/23

1−(√(x^2 +1)) =a (say)  (a)^(1/6)  +((−a))^(1/6)  =1  ((a)^(1/6)  +((−a))^(1/6)  )^2 =1^2   a^(1/3) +2a^(1/6) (−a)^(1/6) +(−a)^(1/3) =1  a^(1/3) +(−a)^(1/3) =1−2a^(1/6) (−a)^(1/6)   (a^(1/3) +(−a)^(1/3) )^3 =(1−2a^(1/6) (−a)^(1/6) )^3   {a+(−a)}+3(a^(1/3) )(−a)^(1/3) {a^(1/3) +(−a)^(1/3) }    =.....

1x2+1=a(say)a6+a6=1(a6+a6)2=12a1/3+2a1/6(a)1/6+(a)1/3=1a1/3+(a)1/3=12a1/6(a)1/6(a1/3+(a)1/3)3=(12a1/6(a)1/6)3{a+(a)}+3(a1/3)(a)1/3{a1/3+(a)1/3}=.....

Answered by mr W last updated on 10/Dec/23

let u=((1−(√(x^2 +1))))^(1/6)   (((√(x^2 +1))−1))^(1/6) =(((−1)(1−(√(x^2 +1)))))^(1/6) =(i)^(1/3) u  u+(i)^(1/3) u=1  u(1+(i)^(1/3) )=1  u=(1/(1+(i)^(1/3) ))=((1−(√(x^2 +1))))^(1/6)   (√(x^2 +1))=1−(1/((1+(i)^(1/3) )^6 ))  ⇒x=±(√([1−(1/((1+(i)^(1/3) )^6 ))]^2 −1))

letu=1x2+16x2+116=(1)(1x2+1)6=i3uu+i3u=1u(1+i3)=1u=11+i3=1x2+16Missing \left or extra \rightMissing \left or extra \right

Answered by Frix last updated on 10/Dec/23

z^(1/6) +(−z)^(1/6) =1  z=re^(iθ) ∧−z=re^(i(θ−π))   z^(1/6) +(−z)^(1/6) ∈R ⇒ θ=−(θ−π) ⇒ θ=(π/2)  ⇒ z=re^(i(π/2)) ∧−z=re^(−i(π/2))   (re^(i(π/2)) )^(1/6) +(re^(−i(π/2)) )^(1/6) =1  r^(1/6) (e^(i(π/(12))) +e^(−i(π/(12))) )=1  r^(1/6) (((√6)+(√2))/2)=1  r^(1/6) =(((√6)−(√2))/2)  r=26−15(√3)  z=(26−15(√3))i  (26−15(√3))i=±(1−(√(x^2 +1)))  This can be solved exactly...

z16+(z)16=1z=reiθz=rei(θπ)z16+(z)16Rθ=(θπ)θ=π2z=reiπ2z=reiπ2(reiπ2)16+(reiπ2)16=1r16(eiπ12+eiπ12)=1r166+22=1r16=622r=26153z=(26153)i(26153)i=±(1x2+1)Thiscanbesolvedexactly...

Answered by witcher3 last updated on 10/Dec/23

no real solution   (1−(√(x^2 +1)))^(1/6) =e^((iπ)/6) ((√(x^2 +1))−1)^(1/6) +((√(x^2 +1))−1)^(1/6) =1  (√(x^2 +1))−1=((1/(e^((iπ)/6) +1)))^6 =(e^(−((iπ)/2)) /((2cos((π/(12))))^6 ))=−(i/(32cos^6 ((π/(12)))))=a  x^2 +1=(a+1)^2   x^2 =a^2 +2a  x=+_− (√(a^2 +2a))  a=−(i/(32cos^6 ((π/(12)))))

norealsolution(1x2+1)16=eiπ6(x2+11)16+(x2+11)16=1x2+11=(1eiπ6+1)6=eiπ2(2cos(π12))6=i32cos6(π12)=ax2+1=(a+1)2x2=a2+2ax=+a2+2aa=i32cos6(π12)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com