Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201702 by hardmath last updated on 10/Dec/23

Find:  ∫_1 ^( 3)  dx ∫_x ^( x^3 )  (x − y) dy

Find:13dxxx3(xy)dy

Commented by mr W last updated on 11/Dec/23

take care! i think you want to mean  ∫_1 ^3 ∫_x ^x^3  (x−y)dydx

takecare!ithinkyouwanttomean13xx3(xy)dydx

Answered by mr W last updated on 11/Dec/23

∫_1 ^3 ∫_x ^x^3  (x−y)dydx  =∫_1 ^3 [∫_x^3  ^x (x−y)d(x−y)]dx  =∫_1 ^3 [(((x−y)^2 )/2)]_x^3  ^x dx  =−∫_1 ^3 (((x−x^3 )^2 )/2)dx  =−(1/2)∫_1 ^3 (x^2 −2x^4 +x^6 )dx  =−(1/2)[(x^3 /3)−((2x^5 )/5)+(x^7 /7)]_1 ^3   =−(1/2)(((3^3 −1^3 )/3)−((2(3^5 −1^5 ))/5)+((3^7 −1^7 )/7))  =−(1/2)(((26)/3)−((2×242)/5)+((2186)/7))  =−((11768)/(105))

13xx3(xy)dydx=13[x3x(xy)d(xy)]dx=13[(xy)22]x3xdx=13(xx3)22dx=1213(x22x4+x6)dx=12[x332x55+x77]13=12(331332(3515)5+37177)=12(2632×2425+21867)=11768105

Commented by hardmath last updated on 11/Dec/23

cool dear professor

cooldearprofessor

Terms of Service

Privacy Policy

Contact: info@tinkutara.com