Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201722 by Calculusboy last updated on 11/Dec/23

Commented by Frix last updated on 11/Dec/23

There also should be complex solutions

Therealsoshouldbecomplexsolutions

Answered by Sutrisno last updated on 11/Dec/23

x^2 +y^2 +xy=3  (x+y)^2 −xy=3  xy=(x+y)^2 −3 ...(1)  ((x+y)+1)(4+(x+y)^2 −3+2(x+y))=27  ((x+y)+1)((x+y)^2 +2(x+y)+1)=27  ((x+y)+1)((x+y)+1)^2 =27  ((x+y)+1)^3 =27  x+y=2 ...(2)  xy=2^2 −3→ xy=1  x(2−x)=1  x^2 −2x+1=0  x=1, y=1

x2+y2+xy=3(x+y)2xy=3xy=(x+y)23...(1)((x+y)+1)(4+(x+y)23+2(x+y))=27((x+y)+1)((x+y)2+2(x+y)+1)=27((x+y)+1)((x+y)+1)2=27((x+y)+1)3=27x+y=2...(2)xy=223xy=1x(2x)=1x22x+1=0x=1,y=1

Commented by Calculusboy last updated on 11/Dec/23

thanks sir

thankssir

Answered by esmaeil last updated on 12/Dec/23

x+y=s→S^2 −p=3  xy=p→(s+1)(4+p+2s)=27→  (s+1)((s^2 +1+2s)=27→  (s+1)=3→s=2→p=1  a^2 −2a+1=0→x=y=1

x+y=sS2p=3xy=p(s+1)(4+p+2s)=27(s+1)((s2+1+2s)=27(s+1)=3s=2p=1a22a+1=0x=y=1

Answered by Rasheed.Sindhi last updated on 12/Dec/23

Slightly different way   { ((x^2 +y^2 +xy=3.......(i))),(((x+y+1)(4+xy+2x+2y)=27...(ii))) :}    (ii)⇒(x+y+1)(1+3+xy+2x+2y)=27            (x+y+1)(1+x^2 +y^2 +xy+xy+2x+2y)=27            (x+y+1)(1+x^2 +y^2 +2xy+2x+2y)=27            (x+y+1)( (x+y)^2 +2(x+y)+1 )=27           (x+y+1) (x+y+1)^2 =27            (x+y+1)^3 =27             x+y+1=3            x+y=2.....(iii)            x^2 +y^2 +2xy=4            x^2 +y^2 +xy+xy=4             3+xy=4              xy=1.......(i)  (iii) & (iv):    x=1,y=1

Slightlydifferentway{x2+y2+xy=3.......(i)(x+y+1)(4+xy+2x+2y)=27...(ii)(ii)(x+y+1)(1+3+xy+2x+2y)=27(x+y+1)(1+x2+y2+xy+xy+2x+2y)=27(x+y+1)(1+x2+y2+2xy+2x+2y)=27(x+y+1)((x+y)2+2(x+y)+1)=27(x+y+1)(x+y+1)2=27(x+y+1)3=27x+y+1=3x+y=2.....(iii)x2+y2+2xy=4x2+y2+xy+xy=43+xy=4xy=1.......(i)(iii)&(iv):x=1,y=1

Commented by Calculusboy last updated on 15/Dec/23

thanks sir

thankssir

Answered by Rasheed.Sindhi last updated on 12/Dec/23

A way leading  determinant (((ALL))) the solutions:   { ((x^2 +y^2 +xy=3....(i))),(((x+y+1)(4+xy+2x+2y)=27...(ii))) :}   (ii)⇒(x+y+1)(1+3+xy+2x+2y)=(3)^3         (x+y+1)(1+x^2 +y^2 +xy+xy+2x+2y)=(3)^3         (x+y+1)( (x+y)^2 +2(x+y)+1 )=(3)^3         (x+y+1)(x+y+1)^2 =(3)^3         (x+y+1)^3 =(3)^(3 )         (x+y+1)^3 −(3)^(3 ) =0         {(x+y+1)−3}{(x+y+1)^2 +3(x+y+1)+9}=0^(★★)        x+y+1−3=0_(→real roots)  ∣ (x+y+1)^2 +3(x+y+1)+9=0^★ _(→complex roots)        x+y=2⇒y=2−x  (i)⇒x^2 +(2−x)^2 +x(2−x)=3             x^2 −2x+1=0              (x−1)^2 =0                x=1^✓ ⇒y=2−x=2−1=1^✓      ^★ x+y+1=((−3±(√(9−4(9)(1))))/2)=((−3±3(√3))/2)       x+y=((−3±3(√3))/2)−1=((−5±3(√3))/2)         y=((−5±3(√3))/2)−x  (i)⇒(x+y)^2 −xy=3⇒(((−5±3(√3))/2))^2 −x(((−5±3(√3))/2)−x)=3  let ((−5±3(√3))/2)=a  a^2 −x(a−x)−3=0   x^2 −ax+a^2 −3=0  x=((a±(√(a^2 −4(a^2 −3))))/2)=((a±(√(12−3a^2 )))/2)   y=a−x=a−((a±(√(12−3a^2 )))/2)=((a∓(√(12−3a^2 )))/2)    where a= ((−5±3(√3))/2)

AwayleadingALLthesolutions:{x2+y2+xy=3....(i)(x+y+1)(4+xy+2x+2y)=27...(ii)(ii)(x+y+1)(1+3+xy+2x+2y)=(3)3(x+y+1)(1+x2+y2+xy+xy+2x+2y)=(3)3(x+y+1)((x+y)2+2(x+y)+1)=(3)3(x+y+1)(x+y+1)2=(3)3(x+y+1)3=(3)3(x+y+1)3(3)3=0{(x+y+1)3}{(x+y+1)2+3(x+y+1)+9}=0Missing \left or extra \rightx+y=2y=2x(i)x2+(2x)2+x(2x)=3x22x+1=0(x1)2=0x=1y=2x=21=1x+y+1=3±94(9)(1)2=3±332x+y=3±3321=5±332y=5±332x(i)(x+y)2xy=3(5±332)2x(5±332x)=3let5±332=aa2x(ax)3=0x2ax+a23=0x=a±a24(a23)2=a±123a22y=ax=aa±123a22=a123a22wherea=5±332

Commented by Rasheed.Sindhi last updated on 12/Dec/23

^(★★)    x+y+1−3=0 ∣ (x+y+1)^2 +3(x+y+1)+9=0         x+y+1= 3 , 3ω , 3ω^2          x+y=2 , 3ω−1 , 3ω^2 −1  (i)⇒(x+y)^2 −xy=3⇒xy=(x+y)^2 −3           xy=4−3 , (3ω−1)^2 −3 , (3ω^2 −1)^2 −3       ......       ....

x+y+13=0(x+y+1)2+3(x+y+1)+9=0x+y+1=3,3ω,3ω2x+y=2,3ω1,3ω21(i)(x+y)2xy=3xy=(x+y)23xy=43,(3ω1)23,(3ω21)23..........

Commented by Calculusboy last updated on 15/Dec/23

nice solution sir

nicesolutionsir

Answered by ajfour last updated on 12/Dec/23

x+y=s   ,  xy=m  s^2 =3+m  (s+1)(2s+m+4)=27  (s+1)(s^2 +2s+1)=27  s=−1+3 , −1+3ω, −1+3ω^2   x, y=((s±(√(3(4−s^2 ))))/2)  say if s=2  x, y=(s/2) = 1

x+y=s,xy=ms2=3+m(s+1)(2s+m+4)=27(s+1)(s2+2s+1)=27s=1+3,1+3ω,1+3ω2x,y=s±3(4s2)2sayifs=2x,y=s2=1

Commented by Calculusboy last updated on 15/Dec/23

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com