Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201763 by hardmath last updated on 11/Dec/23

Find:  1. ∫ cos3x cosx dx = ?  2. ∫ 3^x  sinx dx = ?  3. ∫_(0 ) ^( 1)  x e^(−x)  dx = ?  4. ∫_1 ^( e)  ln^2  x dx = ?

Find:1.cos3xcosxdx=?2.3xsinxdx=?3.01xexdx=?4.1eln2xdx=?

Answered by Calculusboy last updated on 12/Dec/23

Solution:   (3)∫_0 ^1 xe^(−x) dx   (by using Bernoulli′s formula)  u=x  u′=1  u′′=0 and v=e^(−x)   v_1 =−e^(−x)    v_2 =e^(−x)   v_3 =−e^(−x)   I=uv_1 −u′v_2 +u′′v_3 −u′′′v_4 +∙∙∙  I=−xe^(−x) −e^(−x)   I=−[xe^(−x) ]_0 ^1 −[e^(−x) ]_0 ^1   I=−[e^(−1) −0]−[e^(−1) −1]  I=−e^(−1) −e^(−1) +1  I=1−(2/e)=((e−2)/e)✓

Solution:(3)01xexdx(byusingBernoullisformula)u=xu=1u=0andv=exv1=exv2=exv3=exI=uv1uv2+uv3uv4+I=xexexI=[xex]01[ex]01I=[e10][e11]I=e1e1+1I=12e=e2e

Commented by hardmath last updated on 12/Dec/23

thank you ser

thankyouser

Answered by Calculusboy last updated on 12/Dec/23

Solution:  (2) ∫ 3^x  sinx dx   (by using IBP)  let u=3^x   du=3^x In(3)dx   dv=sinx  v=−cosx  ∫udvdx=uv−∫vdudx   let I=∫udvdx  I=−3^x cosx+In(3)∫3^x cosx dx  let I_1 =∫3^x cosxdx let u=3^x   du=3^x In(3)dx  dv=cosx  v=sinx  I_1 =uv−∫vdudx  I_1 =3^x sinx−In(3)∫3^x sinxdx  but I=∫3^x sinxdx  I_1 =3^x sinx−In(3)I  and I=−3^x cosx+In(3)I_1   I=−3^x cosx+In(3)[3^x sinx−In(3)I]  I=−3^x cosx+3^x In(3)sinx−In^2 (3)I  I+In^2 (3)I=3^x In(3)sinx−3^x cosx  I=(3^x /( [1+In^2 (3)])){In(3)sinx−cosx}+C

Solution:(2)3xsinxdx(byusingIBP)letu=3xdu=3xIn(3)dxdv=sinxv=cosxudvdx=uvvdudxletI=udvdxI=3xcosx+In(3)3xcosxdxletI1=3xcosxdxletu=3xdu=3xIn(3)dxdv=cosxv=sinxI1=uvvdudxI1=3xsinxIn(3)3xsinxdxbutI=3xsinxdxI1=3xsinxIn(3)IandI=3xcosx+In(3)I1I=3xcosx+In(3)[3xsinxIn(3)I]I=3xcosx+3xIn(3)sinxIn2(3)II+In2(3)I=3xIn(3)sinx3xcosxI=3x[1+In2(3)]{In(3)sinxcosx}+C

Commented by hardmath last updated on 12/Dec/23

thank you ser,  In = ln.?

thankyouser,In=ln.?

Commented by Calculusboy last updated on 12/Dec/23

i mean it like this Ln

imeanitlikethisLn

Commented by mr W last updated on 12/Dec/23

you know the differen between I and  l, but you wont make the difference  and therefore cause confusions  again and again.  see Q201546

youknowthedifferenbetweenIandl,butyouwontmakethedifferenceandthereforecauseconfusionsagainandagain.seeQ201546

Commented by hardmath last updated on 12/Dec/23

thank you dear professors

thankyoudearprofessors

Commented by Calculusboy last updated on 12/Dec/23

am sorry for the confusing sir

amsorryfortheconfusingsir

Answered by Calculusboy last updated on 12/Dec/23

Solution:  (1) ∫cos3xcosxdx  Recall that ∫cosaxcosbxdx=(1/2)∫[cos(a−b)x+cos(a+b)x]dx  I=(1/2)∫[cos(3−1)x+cos(3+1)x]dx  I=(1/2)∫[cos2x+cos4x]dx  I=(1/2)[∫cos2xdx+∫cos4xdx]  I=(1/2)[((sin2x)/2)+((sin4x)/4)]+C

Solution:(1)cos3xcosxdxRecallthatcosaxcosbxdx=12[cos(ab)x+cos(a+b)x]dxI=12[cos(31)x+cos(3+1)x]dxI=12[cos2x+cos4x]dxI=12[cos2xdx+cos4xdx]I=12[sin2x2+sin4x4]+C

Answered by esmaeil last updated on 12/Dec/23

4:  =Ω  lnxdx=dv→v=xlnx−x     lnx=u→(dx/x)=du  →Ω=xln^2 x−xlnx−(∫^e _1 (lnx−1)dx)=  xln^2 x−2xlnx+2x]^e _1 =  e−2

4:=Ωlnxdx=dvv=xlnxxlnx=udxx=duΩ=xln2xxlnx(1e(lnx1)dx)=Missing \left or extra \righte2

Answered by Calculusboy last updated on 12/Dec/23

Solution:  (4) ∫_1 ^e Ln^2 x dx=∫_1 ^e (Lnx)^2 dx    (by using u−sub)  let p=Lnx   xdp=dx  x=e^p   when x=e p=1  and when x=1  p=0  I=∫_0 ^1 p^2 ∙e^p dp  (by using BF method)  u=p^2   u′=2p  u′′=2   u′′′=0  v=e^p   v_1 =e^p   v_2 =e^p   v_3 =e^p   v_4 =e^p   I=uv_1 −u′v_2 +u′′v_3 −u′′′v_4 +∙∙∙  I=∣p^2 e^p ∣_0 ^1 −2∣pe^p ∣_0 ^1 +2∣e^p ∣_0 ^1  +C  I=(e−0)−2(e−0)+2(e−1)  I=e−2e+2e−2  I=e−2

Solution:(4)1eLn2xdx=1e(Lnx)2dx(byusingusub)letp=Lnxxdp=dxx=epwhenx=ep=1andwhenx=1p=0I=01p2epdp(byusingBFmethod)u=p2u=2pu=2u=0v=epv1=epv2=epv3=epv4=epI=uv1uv2+uv3uv4+I=∣p2ep012pep01+2ep01+CI=(e0)2(e0)+2(e1)I=e2e+2e2I=e2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com