All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 201790 by ajfour last updated on 12/Dec/23
Commented by ajfour last updated on 12/Dec/23
Canwefindsidesof◻PQRSintermsofa,b,c?
Answered by a.lgnaoui last updated on 14/Dec/23
(R−a)2+b2=R2⇒R=a2+b22aBD=2R=DT+TB⇒TB=2R−aalorsPQ=SR=(a2+b2a−a)=b2aFS=TS−bET=TF=bΔOTF/OTS∡FOT=θ∡SOT=λOF=ROS3=(b+FS)2+(R−a)2PosonsFS=xOS2=(b+x)2+(b2−a2)4a2OS=4a2(b+x)2+b2−a24a2cosθ=(b2−a2)a2+b2sinθ=2aba2+b2cosλ=(b2−a2)4a2(b+x)+b2−a2sinλ=2a(b+x)4a2(b+x)+b2−a2OF×OS=(a2+b2)4a24a2(x+b)2+b2−a2ΔOFSFS2=OF2+OS2−2(OF×OS)cos(λ−θ)cos(λ−θ)=(b2−a2)2(a2+b2)4a2(b+x)+b2−a2+4a2b(b+x)(a2+b2)4a2(b+x)+b2−a2=x2=(a2+b2)24a2+4a2(b+x)2+b2−a24a2−2[(a3+b2)2a×4a2(b+x)2+b2−a22a]×(b2−a2)2+4a2b(b+x)(a2+b2)4a2+(b+x)2+b2−a2x2=a2+b2+4a2(b+x)2+b2−a24a2−(b2−a2)22a2−2b(b+x)0=a2+b24a2+(b+x)2+b2−a24a2−(b2−a2)22a2−2b(b+x)x=FS⇒TS=b+x=XX2−2bX+b2−(b2−a2)22a2=0Δ′=b2+(b2−a2)2−b22a2=b4+a4−2a2b2−b22a2X=b±1aa4+b4−b2(2a2+1)2alorsTS=b+1aa4+b4−b2(2a2+1)2dememepourPTcas(PE=FS)OnaalorsPS=PT+TSConclusion:PS=QR=2b+2aa4+b4−b2(2a2+1)2PQ=SR=b2a
Commented by a.lgnaoui last updated on 14/Dec/23
Terms of Service
Privacy Policy
Contact: info@tinkutara.com