Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 201790 by ajfour last updated on 12/Dec/23

Commented by ajfour last updated on 12/Dec/23

Can we find sides of □PQRS  in  terms of a,b,c ?

CanwefindsidesofPQRSintermsofa,b,c?

Answered by a.lgnaoui last updated on 14/Dec/23

(R−a)^2 +b^2 =R^2   ⇒    R=((a^2 +b^2 )/(2a))  BD=2R=DT+TB ⇒    TB=2R−a  alors   PQ  =SR=(((a^2 +b^2 )/a)−a)=(b^2 /a)  FS=TS−b       ET=TF=b    ΔOTF/OTS  ∡FOT=𝛉   ∡SOT=𝛌    OF=R    OS^3 =(b+FS)^2 +(R−a)^2   Posons  FS=x      OS^2 =(b+x)^2 +(((b^2 −a^2 ))/(4a^2 ))      OS=((4a^2 (b+x)^2 +b^2 −a^2 )/(4a^2 ))  cos 𝛉=(((b^2 −a^2 ))/(a^2 +b^2 ))      sin 𝛉=((2ab)/(a^2 +b^2 ))    cos 𝛌=(((b^2 −a^2 ))/( (√(4a^2 (b+x)+b^2 −a^2 ))))  sin 𝛌=((2a(b+x))/( (√(4a^2 (b+x)+b^2 −a^2 ))))  OF×OS=(((a^2 +b^2 ))/(4a^2 )) ((√(4a^2 (x+b)^2 +b^2 −a^2 ))/)    ΔOFS    FS^2 =OF^2 +OS^2 −2(OF×OS)cos (𝛌−𝛉)  cos (𝛌−𝛉)=(((b^2 −a^2 )^2 )/( (a^2 +b^2 )(√(4a^2 (b+x)+b^2 −a^2 ))))           +((4a^2 b(b+x))/((a^2 +b^2 )(√(4a^2 (b+x)+b^2 −a^2 ))))  =    x^2 =(((a^2 +b^2 )^2 )/(4a^2 ))+((4a^2 (b+x)^2 +b^2 −a^2 )/(4a^2 ))       −2[(((a^3 +b^2 ))/(2a))×((√(4a^2 (b+x)^2 +b^2 −a^2 ))/(2a))]×    (((b^2 −a^2 )^2 +4a^2 b(b+x))/((a^2 +b^2 )(√(4a^2 +(b+x)^2 +b^2 −a^2 ))))    x^2 =  ((a^2 +b^2 +4a^2 (b+x)^2 +b^2 −a^2 )/(4a^2 ))     −(((b^2 −a^2 )^2 )/(2a^2 ))−2b(b+x)  0=((a^2 +b^2 )/(4a^2 ))+(b+x)^2 +((b^2 −a^2 )/(4a^2 ))−(((b^2 −a^2 )^2 )/(2a^2 ))    −2b(b+x)  x=FS    ⇒   TS=b+x=X  X^2 −2bX+((b^2 −(b^2 −a^2 )^2 )/(2a^2 ))=0  Δ′  =b^2 +(((b^2 −a^2 )^2 −b^2 )/(2a^2 ))      =((b^4 +a^4 −2a^2 b^2 −b^2 )/(2a^2 ))     X=b±(1/a)(√((a^4 +b^4 −b^2 (2a^2 +1))/2))  alors  TS=b+(1/a)(√((a^4 +b^4 −b^2 (2a^2 +1))/2))        de meme pour PT cas  (PE=FS)       On a alors       PS=PT+TS  Conclusion:     PS=QR=2b+(2/a)(√((a^4 +b^4 −b^2 (2a^2 +1))/2))   PQ=SR=         (b^2 /a)

(Ra)2+b2=R2R=a2+b22aBD=2R=DT+TBTB=2RaalorsPQ=SR=(a2+b2aa)=b2aFS=TSbET=TF=bΔOTF/OTSFOT=θSOT=λOF=ROS3=(b+FS)2+(Ra)2PosonsFS=xOS2=(b+x)2+(b2a2)4a2OS=4a2(b+x)2+b2a24a2cosθ=(b2a2)a2+b2sinθ=2aba2+b2cosλ=(b2a2)4a2(b+x)+b2a2sinλ=2a(b+x)4a2(b+x)+b2a2OF×OS=(a2+b2)4a24a2(x+b)2+b2a2ΔOFSFS2=OF2+OS22(OF×OS)cos(λθ)cos(λθ)=(b2a2)2(a2+b2)4a2(b+x)+b2a2+4a2b(b+x)(a2+b2)4a2(b+x)+b2a2=x2=(a2+b2)24a2+4a2(b+x)2+b2a24a22[(a3+b2)2a×4a2(b+x)2+b2a22a]×(b2a2)2+4a2b(b+x)(a2+b2)4a2+(b+x)2+b2a2x2=a2+b2+4a2(b+x)2+b2a24a2(b2a2)22a22b(b+x)0=a2+b24a2+(b+x)2+b2a24a2(b2a2)22a22b(b+x)x=FSTS=b+x=XX22bX+b2(b2a2)22a2=0Δ=b2+(b2a2)2b22a2=b4+a42a2b2b22a2X=b±1aa4+b4b2(2a2+1)2alorsTS=b+1aa4+b4b2(2a2+1)2dememepourPTcas(PE=FS)OnaalorsPS=PT+TSConclusion:PS=QR=2b+2aa4+b4b2(2a2+1)2PQ=SR=b2a

Commented by a.lgnaoui last updated on 14/Dec/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com