All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 201888 by MrGHK last updated on 15/Dec/23
Answered by namphamduc last updated on 15/Dec/23
S=∑∞n=0ψ(n+2)(n+2)2=∑∞n=1ψ(n+1)(n+1)2=∑∞n=1Hn−γ(n+1)2=−γ(π26−1)+∑∞n=1Hn(n+1)2∗∑∞n=1Hn(n+1)2=∑∞n=1Hn+1−1n+1(n+1)2=−ζ(3)+1+∑∞n=1Hn+1(n+1)2=−ζ(3)+∑∞n=1Hnn2=−ζ(3)−∑∞n=11n∫01xn−1ln(1−x)dx=−ζ(3)+∫01ln2(1−x)xdx=−ζ(3)+∫01ln2(x)1−xdx=−ζ(3)+2∑∞n=01(n+1)3=ζ(3)⇒S=ζ(3)−γ(π26−1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com