Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201890 by sonukgindia last updated on 15/Dec/23

Answered by mr W last updated on 15/Dec/23

B′=(−2,1)  ((y_P −1)/(0−(−2)))=((5−1)/(5−(−2)))  ⇒y_P =((15)/7) ⇒P(0, ((15)/7))  (d_1 +d_2 )_(min) =AB′=(√(7^2 +4^2 ))=(√(65))

B=(2,1)yP10(2)=515(2)yP=157P(0,157)(d1+d2)min=AB=72+42=65

Commented by ajfour last updated on 15/Dec/23

What if instead of y axis (x=0),  P lies on  parabola  x=(√y) ; what is  d_(min) =(d_1 +d_2 )_(min) =?

Whatifinsteadofyaxis(x=0),Pliesonparabolax=y;whatisdmin=(d1+d2)min=?

Commented by ajfour last updated on 16/Dec/23

Say P(x, x^2 )    ;     d_1 +d_2 =s(x)  s(x)=(√((5−x)^2 +(5−x^2 )^2 ))+(√((x−2)^2 +(x^2 −1)^2 ))  s_(min) =s(x_0 )  . Find x_0 .  s^2 =h+k+2(√(hk))  h−k=24−8x^2 +21−6x  h+k=2x^4 −10x^2 −14x+55  (ds/dx)=((((dh/dx)))/(2(√h)))+((((dk/dx)))/(2(√k)))=0  ⇒  (k/h)=−(dk/dh)  ⇒  kdh+hdk=0  ⇒  (dh/h)+(dk/k)=0  ln (hk)=c=ln (h_0 k_0 )=ln 250  ⇒  hk=250        (k/h)=−{((2(x−2)+4x(x^2 −1))/(2(x−5)+4x(x^2 −5)))}  s^2 −10(√(10))=h+k  also   (dh/dx)+(dk/dx)=0  ⇒  8x^3 −20x−14=0  or  (2x)^3 −10(2x)−14=0  x=(9^(2/3) /(18)){(63+(√(969)))^(1/3) +(63−(√(969)))^(1/3) }   ≈ 1.855562

SayP(x,x2);d1+d2=s(x)s(x)=(5x)2+(5x2)2+(x2)2+(x21)2smin=s(x0).Findx0.s2=h+k+2hkhk=248x2+216xh+k=2x410x214x+55dsdx=(dhdx)2h+(dkdx)2k=0kh=dkdhkdh+hdk=0dhh+dkk=0ln(hk)=c=ln(h0k0)=ln250hk=250kh={2(x2)+4x(x21)2(x5)+4x(x25)}s21010=h+kalsodhdx+dkdx=08x320x14=0or(2x)310(2x)14=0x=92/318{(63+969)1/3+(63969)1/3}1.855562

Commented by mr W last updated on 15/Dec/23

P(p, p^2 )  tangent through P:  y=p^2 +2p(x−p)  ⇒2px−y^2 −p^2 =0  image of B(2, 1) is B′(h, k)  ((h−2)/(2p))=((k−1)/(−1))=((−2(2p×2−1^2 −p^2 ))/((2p)^2 +(−1)^2 ))  ⇒h=2+((4p(p^2 −4p+1))/(4p^2 +1))  ⇒k=1−((2(p^2 −4p+1))/(4p^2 +1))  ((p−h)/(5−h))=((p^2 −k)/(5−k))  ((p−5)/(−4p^3 +28p^2 −4p+3))=((p^2 −5)/(18p^2 −8p+6))  4p^5 −28p^4 +2p^3 +39p^2 +26p−15=0  ⇒p≈1.55436

P(p,p2)tangentthroughP:y=p2+2p(xp)2pxy2p2=0imageofB(2,1)isB(h,k)h22p=k11=2(2p×212p2)(2p)2+(1)2h=2+4p(p24p+1)4p2+1k=12(p24p+1)4p2+1ph5h=p2k5kp54p3+28p24p+3=p2518p28p+64p528p4+2p3+39p2+26p15=0p1.55436

Commented by mr W last updated on 15/Dec/23

Commented by ajfour last updated on 15/Dec/23

splendid way! Thanks sir.

splendidway!Thankssir.

Answered by cortano12 last updated on 15/Dec/23

 let P(0,b)   ⇒AP=(√(5^2 +(5−b)^2 ))   ⇒BP=(√(2^2 +(1−b)^2 ))   ⇒f(b)=(√(25+(5−b)^2 ))+(√(4+(1−b)^2 ))  ⇒ f ′(b)= ((−(5−b))/( (√(25+(5−b)^2 )))) −(((1−b))/( (√(4+(1−b)^2 ))))  ⇒f ′(b)= 0    ((b−5)/( (√(25+(5−b)^2 )))) = ((1−b)/( (√(4+(1−b)^2 ))))   ((b^2 −10b+25)/( 50−10b+b^2 )) = ((b^2 −2b+1)/(5−2b+b^2 ))    { ((b_1 =−(5/3))),((b_2 =((15)/7))) :}    { ((P_1 (0,−(5/3)))),((P_2 (0,((15)/7)))) :}⇒ { ((d_1 =(√(25+((400)/9)))+(√(4+((64)/9)))=((35)/3)≈11.67)),((d_2 =(√(25+((400)/(49))))+(√(4+((64)/(49))))=(√(65))≈8.062)) :}   ∴ d_(min) = (√(65)) at P(0,((15)/7))

letP(0,b)AP=52+(5b)2BP=22+(1b)2f(b)=25+(5b)2+4+(1b)2f(b)=(5b)25+(5b)2(1b)4+(1b)2f(b)=0b525+(5b)2=1b4+(1b)2b210b+255010b+b2=b22b+152b+b2{b1=53b2=157{P1(0,53)P2(0,157){d1=25+4009+4+649=35311.67d2=25+40049+4+6449=658.062dmin=65atP(0,157)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com