All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 201898 by sonukgindia last updated on 15/Dec/23
Answered by Frix last updated on 15/Dec/23
I=4∫π20dx1+3sin2x=t=tanx4∫∞0dt4t2+1==2[tan−12t]0∞=π
Answered by Mathspace last updated on 18/Dec/23
I=∫02πdx1+31−cos(2x)2(2x=t)=∫04πdt2(1+3−3cost2)=∫04πdt2+3−3cost=∫04πdt5−3cost=∫02πdt5−3cost+∫2π4πdt5−3cost(t=2π+α)=2∫02πdt5−3cost(z=eit)=2∫∣z∣=1dziz(5−3z+z−12)=∫∣z∣=1−4idzz(10−3z−3z−1)=∫∣z∣=1−4i−3z2+10z−3dz=∫∣z∣=14i3z2−10z+3dzletΦ(z)=4i3z2−10z+3?polesΔ′=(−5)2−9=16⇒z1=5+43=3andz2=5−43=13∣z1∣=3>1(totrow)∣z2∣<1so∫∣z∣=1Φ(z)dz=2iπRes(Φ,z2)=2iπ×4i3(z2−z1)=−8π3(13−3)=−8π1−9=−8π−8=π⇒★∫02πdx1+3sin2x=π★
Terms of Service
Privacy Policy
Contact: info@tinkutara.com