Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201898 by sonukgindia last updated on 15/Dec/23

Answered by Frix last updated on 15/Dec/23

I=4∫_0 ^(π/2) (dx/(1+3sin^2  x)) =^(t=tan x)  4∫_0 ^∞ (dt/(4t^2 +1))=  =2[tan^(−1)  2t]_0 ^∞ =π

I=4π20dx1+3sin2x=t=tanx40dt4t2+1==2[tan12t]0=π

Answered by Mathspace last updated on 18/Dec/23

I=∫_0 ^(2π) (dx/(1+3((1−cos(2x))/2)))  (2x=t)  =∫_0 ^(4π) (dt/(2(1+((3−3cost)/2))))  =∫_0 ^(4π) (dt/(2+3−3cost))=∫_0 ^(4π) (dt/(5−3cost))  =∫_0 ^(2π) (dt/(5−3cost)) +∫_(2π) ^(4π) (dt/(5−3cost))(t=2π +α)  =2∫_0 ^(2π) (dt/(5−3cost))  (z=e^(it) )  =2∫_(∣z∣=1) (dz/(iz(5−3((z+z^(−1) )/2))))  =∫_(∣z∣=1)   ((−4i dz)/(z(10−3z−3z^(−1) )))  =∫_(∣z∣=1)   ((−4i)/(−3z^2 +10z−3))dz  =∫_(∣z∣=1) ((4i)/(3z^2 −10z+3))dz  let Φ(z)=((4i)/(3z^2 −10z +3)) ?poles  Δ^′ =(−5)^2 −9 =16 ⇒  z_1 =((5+4)/3)=3  and z_2 =((5−4)/3)=(1/3)  ∣z_1 ∣=3 >1 (to trow)  ∣z_2 ∣<1 so  ∫_(∣z∣=1)  Φ(z)dz=2iπ Res(Φ,z_2 )  =2iπ×((4i)/(3(z_2 −z_1 )))=((−8π)/(3((1/3)−3)))  =((−8π)/(1−9))=((−8π)/(−8))=π ⇒  ★∫_0 ^(2π) (dx/(1+3sin^2 x))=π★

I=02πdx1+31cos(2x)2(2x=t)=04πdt2(1+33cost2)=04πdt2+33cost=04πdt53cost=02πdt53cost+2π4πdt53cost(t=2π+α)=202πdt53cost(z=eit)=2z∣=1dziz(53z+z12)=z∣=14idzz(103z3z1)=z∣=14i3z2+10z3dz=z∣=14i3z210z+3dzletΦ(z)=4i3z210z+3?polesΔ=(5)29=16z1=5+43=3andz2=543=13z1∣=3>1(totrow)z2∣<1soz∣=1Φ(z)dz=2iπRes(Φ,z2)=2iπ×4i3(z2z1)=8π3(133)=8π19=8π8=π02πdx1+3sin2x=π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com