Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 201940 by Calculusboy last updated on 15/Dec/23

tan^3 (xy^2 +y)=x  find (dy/dx)

tan3(xy2+y)=xfinddydx

Answered by cortano12 last updated on 16/Dec/23

  ⇒(d/dx) [ tan^3 (xy^2 +y) ] = (d/dx)(x)   ⇒ 3tan^2 (xy^2 +y) sec^2 (xy^2 +y) (y^2 +2xyy^′ +y^′ )=1   ⇒ y^2 +(2xy+1)y^′ = ((cos^2 (xy^2 +y))/(3tan^2 (xy^2 +y)))   ⇒y^′ = (1/(2xy+1)) (((cos^2 (xy^2 +y))/(3tan^2 (xy^2 +y))) −y^2 )

ddx[tan3(xy2+y)]=ddx(x)3tan2(xy2+y)sec2(xy2+y)(y2+2xyy+y)=1y2+(2xy+1)y=cos2(xy2+y)3tan2(xy2+y)y=12xy+1(cos2(xy2+y)3tan2(xy2+y)y2)

Commented by Calculusboy last updated on 16/Dec/23

nice solution sir

nicesolutionsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com