Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 201989 by cortano12 last updated on 18/Dec/23

Answered by mr W last updated on 18/Dec/23

Commented by mr W last updated on 18/Dec/23

sin α=(5/(15))=(1/3)  sin β=((10)/(20))=(1/2) ⇒β=30°  BS^2 =10×30 ⇒BS=10(√3)  PB^2 =30^2 +(10(√3))^2 −2×30×10(√3)×((√3)/2)=300  ⇒PB=10(√3)=BS ⇒α+γ=β=30°  ((AB)/(sin γ))=((PB)/(sin (α+β)))  ⇒AB=((10(√3) sin (30°−α))/(sin (30°+α)))     =((10(√3)(cos α−(√3) sin α))/(cos α+(√3) sin α))     =((10(√3)(((2(√2))/3)−((√3)/3)))/(((2(√2))/3)+((√3)/3)))=2(11(√3)−12(√2))≈4.164

sinα=515=13sinβ=1020=12β=30°BS2=10×30BS=103PB2=302+(103)22×30×103×32=300PB=103=BSα+γ=β=30°ABsinγ=PBsin(α+β)AB=103sin(30°α)sin(30°+α)=103(cosα3sinα)cosα+3sinα=103(22333)223+33=2(113122)4.164

Terms of Service

Privacy Policy

Contact: info@tinkutara.com